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Abstract

The goal of this work is to develop a general framework
for transparently managing the interactions and depen-
dencies among input files, development tools, and out-
put files. By unobtrusively monitoring the execution
of unmodified programs, we are able to trackprocess
lineage—each process's parent, children, input files, and
output files, andfile dependency—for each file, the se-
quence of operations and the set of input files used to
create the file. We use this information to implement
Transparent Result Caching (TREC) and describe how
TREC is used to build a number of useful user utili-
ties. Unmakeallows users to query TREC for file lin-
eage information, including the full sequence of pro-
grams executed to create a particular output file.Trans-
parent Makeuses TREC to automatically generate de-
pendency information by observing program execution,
freeing end users from the need to explicitly specify de-
pendency information (i.e., Makefiles can be replaced by
shell scripts).Dynamic Web Object Cachingallows for
the caching of certain dynamically generated web pages,
improving server performance and client latency.

1 Introduction

The goal of this work is to develop a general framework
for transparently managing the interactions and depen-
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dencies among input files, development tools, and out-
put files. By unobtrusively monitoring the execution
of unmodified programs, we are able to trackprocess
lineage—each process's parent, children, input files, and
output files, andfile dependency—for each file, the se-
quence of operations and the set of input files used to
create the file. This information can be used to deter-
mine the exact sequence of operations used to create any
system file or to keep the contents of output files syn-
chronized as dependent input files are modified.

As a motivating example, several years ago, it was dis-
covered that some published satellite data had been in-
correctly normalized; however, because of the lack of
software support, it has been difficult to identify exactly
which experimental results were tainted by the error. It
is believed that several journal articles have since been
published still based on the incorrect data [Dozier 1993].
As another example, one error common to program de-
velopers is introducing a new header file without man-
ually updating dependency information. This can result
in an executable with object files based on different ver-
sions of the same header file, often resulting in subtle
bugs where different modules reading and writing the
same fields of a data structure in fact access different re-
gions of memory.

The combination of transparently obtaining process lin-
eage and file dependency information provides a power-
ful substrate for developing applications in a wide range
of application domains:

� Unmake: Unmake allows users to query the sys-
tem for file lineage information, including the full
sequence of processes executed to create a particu-
lar output file. For example, users running simula-
tions who neglect to document the specific param-
eters used to generate output files can query Un-



make for the program used to create the output, the
specific command line parameters, and the environ-
ment variables in effect when the command was ex-
ecuted.

� Accountability and Access Control:Related to the
Unmake application, TREC can be used to perform
logging of programs run asroot . System admin-
istrators are often forced to giveroot privileges
to multiple users. Unfortunately, this means that
accountability is sacrificed, making it difficult to
ascertain the identity of individuals responsible for
particular actions. Since Unmake can provide pro-
cess lineage information, it can trace file accesses
back to the shell (and hence the user id) of the pro-
cess that originally executedsu . Such a tool can
also be extended to monitor system calls, disallow-
ing certain accesses based on the “effective”uid of
the calling process [Goldberg et al. 1996]. For ex-
ample, Bob acting as root may be disallowed write
access to all files in/dev and/etc .

� Transparent Make:This version of themake utility
allows users to specify the sequence of operations
for constructing output files as simple shell scripts.
The first time the shell script is run, TREC deter-
mines the set of files that affect output files through
empirical observation. During subsequent execu-
tions of the shell script, TREC can re-run only those
commands that have been invalidated by changes
to input files. This approach has two advantages.
First, it frees users from manually specifying de-
pendency information in a language that can be re-
strictive [Levin & McJones 1993]. Next, transpar-
ent make does not require users to manually update
dependency information. Thus, when a new header
file is added to a source tree, TREC transparently
adds the new dependency to its lineage informa-
tion by observing the inputs to subsequent compi-
lations. Similarly, if a tool's command line param-
eters must continuously be updated to produce out-
put files, TREC automatically matches each output
file to the parameters used to generate it.

� Dynamic Web Object Caching:Today many web
pages are constructed dynamically as a result of
user input. One example in the web today is us-
ing CGI-bin programs to produce HTML pages.
For instance, to download the latest version of
Netscape's Navigator, users answer a number of
questions about their platform before being pre-
sented with a page enumerating URLs for the cor-
rect binary. The disadvantage of using CGI-bin
programs are: (i) servers, proxies, and clients are
normally unable to cache the page because the con-

tents might change for every invocation of the pro-
gram, and (ii) retrieving such content incurs extra
overhead at servers because a program must be run
to generate the content (as opposed to transmitting
an existing file). Given some locality in user input,
it would be cheaper to cache the results of CGI-
bin program execution with popular input patterns
(e.g., users wishing to download the latest English
version of Navigator for Windows95/NT), reduc-
ing both server load and client latency. While ex-
isting work allows for applications to be written
that can cache their results [Iyenger & Challenger
1997], TREC automates this process by automati-
cally caching program results and invalidates such
results when the input to a CGI program changes
(e.g., a new version of Navigator becomes avail-
able). This application is more active than the pre-
vious two examples: TREC dependency informa-
tion is used to generate specific actions whenever a
pre-specified operation takes place (an output file is
invalidated when its input files are modified).

In this paper, we demonstrate how our prototype frame-
work for Transparent Result Caching(TREC) is used
to implement three of the above applications: unmake,
transparent make, and dynamic web object caching.

TREC captures file dependency information by inter-
cepting a small number of system calls using native ker-
nel tracing mechanisms. Using the information from
these calls, TREC maintains the following information
for each process: command line arguments, environ-
ment variables, process parent, process children, files
read (input files), and files written (output files). TREC
then organizes this information hierarchically, allowing
users to query the system for file lineage, for example,
to determine all processes involved in creating an output
file. With transparent make for example, we are able to
automatically determine the set of include files associ-
ated with any compilation by observing the I/O behavior
of the compiler. Thus, when an include file is modi-
fied, transparent make automatically determines that re-
compilation is necessary from process lineage informa-
tion. Relative to existing techniques for automatically
determining dependencies, our approach has the added
benefit of not requiring a separate parser for each differ-
ent programming language syntax.

In contrast to our approach using TREC,make and re-
lated software configuration management tools are cur-
rently used to specify and maintain dependency infor-
mation. Such tools suffer from a number of deficiencies.
For example, to manage file and program dependencies,



users must manually specify dependency information.
Programmers must specify the dependencies between
source files, object files, and executables. If any changes
occur, such as introducing a new header file, users must
remember to manually update the dependency informa-
tion. With TREC, maintaining dependency information
is both simpler and less error-prone because dependen-
cies are deduced transparently by observing program ex-
ecution.

Another shortcoming ofmake and related tools is the
inability to track file lineage. Makefiles only implicitly
contain lineage information; if the Makefile changes, the
lineage information about existing output files can also
be destroyed. As described above, lineage information is
helpful in a number of contexts. If an output file does not
contain expected results, debugging is easiest by work-
ing backwards to see whether the problem is with the
file inputs, the data analysis tool, or the command line
parameters. Similarly, if an input file is discovered to
have a flaw, it is helpful to know all the output files de-
rived from the input.

Finally, make is largely targeted toward software de-
velopment; it can be too static to be useful for other
communities. For instance, scientists often spend their
time exploring different sequences of tools, different pa-
rameters, and different parts of an image. For example,
one tool might extract the pixel values for a latitude and
longitude region from a set of files containing satellite
images. However, the images can overlap, and the re-
quested region may span multiple image files. The input
files actually read to create an output file can vary de-
pending on the command line parameters passed to the
tool. Expressing such dynamic dependencies can be dif-
ficult with Makefiles. TREC, on the other hand, is well-
suited for managing dynamic dependencies because of
its ability to discern file lineage simply by observing pro-
gram execution.

The rest of this paper is organized as follows. Our imple-
mentation of TREC, its baseline performance, and limi-
tations of TREC profiling are described in detail in Sec-
tion 2. In Section 3, we describe how TREC is used to
implement our three sample applications, unmake, trans-
parent make, and dynamic web object caching. Section 4
describes related work and Section 5 presents our con-
clusions.
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Figure 1: This figure describes the TREC architecture.

2 Implementation

2.1 Architecture

TREC is implemented using the Solarisproc file sys-
tem (most major UNIX variants provide a substantially
similar interface) to intercept the set of system calls nec-
essary to build dependency information. For our target
UNIX architecture this set includes the following system
calls: open , fork , fork1 , creat , unlink , exec ,
execve , rename andexit . By catching these sys-
tem calls, TREC is able to determine full process lin-
eage information. Command line parameters and envi-
ronment variables are available from theexec system
calls. TREC determines the set of input files and output
files by examining the options to theopen system call
(targets ofcreat are assumed to be output files). This
design choice potentially over-constrains the set of in-
put and output files because, for example, a file opened
for writing that is not actually written to with awrite
system call is considered an output file. We made this
design decision because of the added overhead of inter-
cepting allread andwrite system calls in addition to
the set of calls already being monitored. For some pro-
grams, we observed thatread andwrite operations
were executed four times as often as all other traced sys-
tem calls combined. Note that earlier file system trac-
ing studies also inferred read and write operations to
avoid the extra overhead of tracing the read/write sys-
tem calls [Baker et al. 1991].

The overall TREC system architecture is summarized in
Figure 1. TREC runs as a multi-threaded process that
attaches to a target process using theproc file sys-
tem interface. A trace thread is responsible for build-
ing lineage information. Other threads use this lineage
information to implement the higher-level services de-
scribed in Section 3. Given a list of target system calls,



proc forces a context switch to the TREC tracing thread
whenever a relevant call is executed by the attached pro-
cess or any of its children. The tracing module exports
a callback-based interface to application modules. Mod-
ules, such as transparent make, use the callbacks to de-
termine when output files are modified. Thus, when a
callback is received that a file is modified, a module can
take action on dependent output files—invalidating the
output or re-generating it for example. Currently, call-
backs are exported for file read and write events.

TREC uses the system call information to build a lineage
tree of the target process and all of its children. Each
node of the lineage tree represents an executed process
and contains the following information: execution time,
command line arguments, environment variables, files
read, and files written (a file that is both read and written
by a program is considered to be only an output file).
An example of this lineage information is presented in
Section 3.1.

2.2 Performance

Since the context switches imposed by theproc file
system required to perform our tracing can impose sig-
nificant overhead, we took a number of measurements
to quantify the slowdown. Table 1 quantifies the TREC
overhead for three simple benchmarks. All benchmarks
were conducted on a 167 Mhz Sun Ultra/1 workstation
running Solaris 2.5.1. The first benchmark, open, calls
open andclose on the same file in a tight loop 5000
times (note that only the open call is actually traced).
While the 54.8% overhead imposed by TREC is signif-
icant, the next two benchmarks demonstrate the slow-
down of individual system calls do not adversely affect
the performance of real applications. The next bench-
mark is a compilation of the Apache HTTP server, ver-
sion 1.2.4 [Apa 1995]. The source tree consists of
38,000 lines of C code and was compiled over NFS.
While the 13.9% slowdown is noticeable, we believe it
to be tolerable. The final benchmark, Latex, involved
runninglatex four times,bibtex , and finallydvips
to produce postscript for a 17 page document. For this
benchmark, only a 3.5% overhead is introduced. As in-
dicated by the “Syscall Rate” column in Table 1, the
measured slowdown directly corresponds to the rate at
which processes execute traced system calls. Since the
Latex benchmark executes only 16 traced system calls
per second, it suffers the smallest slowdown.

To address the overhead imposed by theproc and
related tracing facilities, we could implement TREC

functionality in the kernel. Various tools such as
Watchdogs [Bershad & Pinkerton 1988], Interposition
Agents [Jones 1993], or SLIC [Ghormley et al. 1996]
can be used to trace system call activity with little or
no overhead. However, such tools often require root
access to install, can be difficult to use without kernel
source, and can also be difficult to distribute since kernel
copyright restrictions may prevent distribution of source
code. We opted for the user-level approach for portabil-
ity, ease of distribution and installation. If performance
becomes an issue, we believe switching to a kernel im-
plementation will be straight-forward.

2.3 Limitations

As motivated earlier, a number of applications are able
to benefit from TREC functionality. However, TREC
can produce incorrect results for applications that base
their results on non-deterministic or difficult-to-trace in-
put. Following are some example behaviors likely to in-
teract poorly with TREC applications:

� Programs must be deterministic and repeatable.
Each of the programs that contribute to the creation
of a file must behave the same way each time it is
run, assuming that its own inputs have not changed.
A compiler invoked with a given set of options will
generally produce the same object file, as long as
the source code has not changed. A simple ex-
ample of a program that violates this restriction is
UNIX date , whose output is virtually never the
same twice. Any file that relies on the output of
date cannot be guaranteed to be up-to-date, nor
can it be reliably re-created. As discussed in Sec-
tion 2.3, TREC does not currently automatically de-
termine the class of applications that produce non-
deterministic output.

� Programs cannot rely on user input. Related to the
requirement for determinism, programs that rely on
user input or GUI operations are not automatically
re-creatable. For example, if an output file incorpo-
rates user-input to a text editor, TREC cannot accu-
rately model program dependencies.

� Interaction with environment variables must be re-
producible. TREC stores all environment variables
in effect when a program runs. On subsequent runs
of the same program, TREC can check to see if the
currently set environment variables match the envi-
ronment variables in effect when the program was
originally run. If the variables do not match, the



Operation Baseline Traced Syscall Rate Added Overhead
open syscall 12.4 s 19.3 s 403 calls/s 54.8%
Compile 128.4 s 146.2 s 160 calls/s 13.9%
Latex 35.1 s 36.3 s 16 calls/s 3.5%

Table 1: This table describes the overhead introduced by adding TREC profiling.

program should be re-run (as opposed to using the
cached results). TREC assumes that a program's in-
teraction with environment variables is predictable:
all other things being equal, a program run multiple
times with the same set of environment variables
should produce the same results. For some appli-
cations, the value of certain environment variables
will not generally affect program results. In the fu-
ture, we plan to allow TREC users to specify the
set of environment variables that are known not to
affect program results (e.g., REMOTEHOST for
certain CGI programs). It may also be possible
to automate this process by repeatedly running the
same program with different environment variable
values in effect.

� File contents must be static, as long as the modi-
fication time has not changed. While seemingly a
trivial constraint, certain special files do not follow
this convention. Virtually all of the files in/dev
violate this restriction. For example, each time the
tape drive/dev/rmt0 is read, it appears to have
different data, for example, because an operator has
exchanged one tape for another.

� File contents must be changed locally. For exam-
ple, an NFS mounted file might be modified at any
of a number of machines, not all of which may be
traced by TREC. Applications requiring callbacks
on file modification rely on TREC's ability to inter-
cept all file updates.

� In general, TREC cannot profile programs that rely
on network communication to produce their out-
put1. For example, an application that communi-
cates with a remote server may receive different re-
sults for each run of the program.

� Programs must run to completion while being pro-
filed. For example, a program that terminates pre-
maturely because it received a signal may not have
generated complete dependency information, leav-
ing TREC in an inconsistent or incorrect state.

1Note that techniques from the fault tolerance community could
potentially address this limitation [Alvisi & Marzullo 1996].

Despite the limitations outlined above, we will demon-
strate that TREC remains a useful tool in a number of
different contexts. Our current approach to handling out-
put files produced by programs that fall into the above
categories is to allow users to specify a set of program
names whose output cannot be cached or re-created.
TREC uses a configuration file containing a list of pro-
grams whose output is potentially uncacheable. If any of
these programs are involved in producing an output file,
TREC caching is disabled (i.e., by transparent make or
dynamic object caching). In the future, it should be pos-
sible to partially automate the process of determining the
list of programs displaying “dangerous” behavior. For
example, Solaris programs opening/dev/tcp can be
assumed to be carrying out network communication.

Note that while TREC may be unable to transparently
cache the results of certain programs, applications such
as unmake can still provide valuable information to users
about the origins of even uncacheable files. For ex-
ample, if an image file is created using an interactive
visual analysis tool, the output cannot be transparently
re-created since user input was used to drive the result.
However, unmake can still be used to identify the com-
mand executed to start the analysis tool, to determine
the time the command was executed, or to enumerate all
input files used during the creation of the image file.

3 Applications

In this section, we describe three utilities built on top of
the TREC tracing module: unmake, transparent make,
and dynamic web object caching.

3.1 Unmake

The TREC tracing module builds a process lineage tree
as described in the previous section. To demonstrate the
use and utility of this information, we describe a sim-
ple TREC service, unmake, that allows for a number of
simple queries. For example, users might request infor-



mation about all processes, and their parents, that read a
particular file.

As a concrete example, consider the shell script used to
compile a simple program in Figure 2(a). When this
script is run in a shell traced by TREC, the tracing mod-
ule automatically builds lineage information for the pro-
cesses executed by the script. The complete process
lineage tree for producing thetest executable is pre-
sented in Figure 2(b). Arrows between rectangles indi-
cate process parent information. For the leaf processes,
we indicate the files (indicated as ovals) read and writ-
ten by each process. Notice that while the compilation
script makes no reference to a header file (test.h ) or
to the assembler and loader programs, TREC is able to
build full lineage information by observing the execu-
tion of all processes and sub-processes spawned by the
compilation (e.g., TREC is able to transparently deduce
a dependency totest.h by observing the fact that cpp
readtest.h for input).

The unmake module can be interactively queried for pro-
cess lineage. Figure 3 shows partial output of a run for a
query requesting lineage information for processes read-
ing test.c . Unmake searches the lineage information
for records where the set of input files containstest.c ,
in this case returning execution of the C pre-processor,
cpp . Unmake returns the following information about
the execution environment of all traced processes. All
command line arguments, in addition to the environment
variables, are listed (note that for brevity, the list of en-
vironment variables is truncated). All of the program's
input and output files are listed along with a unique pro-
gram ID (currently the UNIX pid) and the ID of the pro-
cess's parent. The children field specifies all spawned
processes (no processes were forked in the case ofcpp ).
The query also recursively provides information on the
process's parent,gcc in this case. While omitted from
Figure 3, information on/bin/sh , the process which
executed the compilation shell script, and/bin/tcsh ,
the root process of the TREC trace, is also returned.

While not currently implemented, unmake combined
with a source control system or, more generally, a file
system capable of transparently producing older file ver-
sions [Heydon et al. 1997] can be used to rollback to
earlier versions of output files. For example, users de-
bugging a program executable may use an interactive
process lineage visualization tool, similar to the display
in Figure 2(b), to identify input files that may have po-
tentially introduced bugs. The user could then roll back
to an earlier version of the suspect input file (using an
appropriate file system or a source control system), in-
structing unmake to rebuild the output file with the new

set of input files.

3.2 Transparent Make

The process and file lineage information produced by
TREC can be used to build a more dynamic version
of the traditionalmake utility, called transparent make
(tmake). With traditionalmake, users are forced to learn
a new language for specifying dependencies between in-
put, intermediate, and output files, a process that can
become cumbersome and error-prone for large develop-
ment efforts. In contrast, tmake allows users to describe
the process for creating output files more naturally; shell
scripts (Figure 2(a) provides a simple example) describe
the sequence of steps used to create an output file.

Thus, rather than forcing users to manually specify de-
pendencies through Makefiles, TREC is able to dynam-
ically determine dependencies by observing the execu-
tion of shell scripts. This approach has the following
advantages: (i) eliminating user errors that may occur
in specifying dependency information, (ii) dynamically
updating dependency information as it changes, and (iii)
eliminating the need to learn the Makefile specification
language, which can be sometimes be complicated, re-
strictive, and/or error-prone. Of course, some users may
be unable to create a shell script for the compilation of
their program because they are accustomed to leverag-
ing existing Makefile templates for compilation of their
programs. In this case, tmake can bootstrap its execution
by profiling the initial execution of amake command.

We currently have two different versions of tmake: a
passive version that brings output up to date in response
to a user command, and an active version that automati-
cally updates output files whenever changes to an input
file is detected. Both versions can be useful in differ-
ent contexts. For example, active tmake may be appro-
priate when a summary file is produced based on a set
of input files. All commands used to create the sum-
mary could be re-executed each time a data set changes
while a visualization tool detects the changes to the file
to update its display of the summary file. In this way,
users could interactively manipulate data sets while vi-
sualizing the effects on a resulting graph. Passive tmake
is likely more appropriate in compilation environments
where users change multiple source files and wish to
manually instruct tmake to re-synchronize output files.

The passive version of tmake provides an interface sim-
ilar to traditionalmake. A shell script carries out tasks
such as compilation while TREC builds process lineage



gcc -c test.c
gcc test.o -o test

sh compilesh compile

gcc test.o -o testgcc test.o -o testgcc -c test.cgcc -c test.c

cppcpp cc1cc1 asas ldld

/var/tmp.i/var/tmp.i testtesttest.otest.o/var/tmp.s/var/tmp.stest.ctest.ctest.htest.h

(a) Compile Script

(b) Process Lineage

Figure 2: The top portion of the figure shows a simple shell script used to compile a program,test . The bottom
portion of the figure graphically depicts the process lineage tree produced by TREC-profiling of the shell script.

information. However, passive tmake does not register
callbacks on file write events. Rather, the user explic-
itly requests re-synchronization of the target of the shell
script by re-executing the shell script. For each com-
mand in the shell script, tmake looks up the set of in-
put files for the command and checks the last modified
time of each input files. If any of the files have been
modified since the last execution time of the command,
the process is re-executed. Otherwise, the command is
skipped. Also consider the case where the compile shell
script is modified—for example, to add a new-O param-
eter to the compiler. In this case, tmake will re-execute
any programs with modified command line parameters
even if file dependencies have not changed since it will
be unable to match the new process and command line
parameters with any entries in its process lineage hierar-
chy. Thus, passive tmake functions similarly tomake,
while maintaining the advantages of implicitly determin-
ing dependency information and dynamically updating
dependencies as they change (without requiring user in-
tervention).

With active tmake, the tmake module registers a callback
with the TREC tracing module when any file is opened
for writing. When the callback is invoked, tmake checks
if the file acted as input to any of the traced processes.
If so, tmake notifies the user of this update and prompts
for re-synchronization of the output files. On a user syn-
chronize command, tmake re-executes the program that
took the modified file as input with the same command
line parameters and environment variables as the pro-
gram's initial execution. Once the program completes,
tmake recursively checks for further dependencies: if the
output files of the just executed program acted as input

for any of the program's parents in the lineage tree, the
ancestor is in turn re-executed. This process is repeated
until an output file is produced that did not act as input
to any ancestor in the lineage tree. Assuming that the
originally profiled program completed, this recursion is
guaranteed to terminate because the dependency tree is
constructed without cycles.

To demonstrate the workings of active tmake, consider
the process lineage example from Figure 2(b). When
the file test.h is modified (e.g., through an editor),
TREC invokes a callback to the tmake module inform-
ing it of the change. Tmake then searches for all pro-
cesses that usedtest.h as input, finding the cpp pro-
cess. After asking for confirmation from the user, tmake
re-executes cpp, noting that it produced an output file,
/var/tmp.i . The process is repeated recursively,
where tmake notices that the modified file was read by
the cc1 process. Processes are executed in this way until
ld produces a current version of thetest executable.
Recursion ends at this point since no process tooktest
as its input. Note that if thetest program is run from
a shell, it is not classified as input to the shell since the
exec system call (as opposed toread ) is used to run
the program. In the general case, files are considered to
depend on the programs executed to create them. Thus,
if the C compiler (/bin/cc ) is updated, all C files will
be re-compiled. However, the recursive check does not
considerexec calls as an input dependency because,
for example, it is pointless to re-execute a shell used to
invoke an updated program.

Instead of prompting the user for permission to re-
synchronize output files, tmake can be configured to



Query: read test.c

Parent ID: 28426 Program ID: 28428
Argv: /usr/local/lib/gcc-lib/sparc-sun-solaris2.5/2.7.2.f.1/cpp

-lang-c -undef -D__GNUC__=2 -D__GNUC_MINOR__=7 -Dsun -Dsparc
-Dunix -D__svr4__ -D__SVR4 -D__GCC_NEW_VARARGS__ -D__sun__
-D__sparc__ -D__unix__ -D__svr4__ -D__SVR4 -D__GCC_NEW_VARARGS__
-D__sun -D__sparc -D__unix -Asystem(unix) -Asystem(svr4)
-Acpu(sparc) -Amachine(sparc) test.c /var/tmp/cca006u2.i

Envp: COLLECT_GCC=gcc HOME=/homes/rivers/vahdat HOST=tolt HOSTNAME=tolt
HOSTTYPE=sun4 LOGNAME=vahdat MACHTYPE=sparc OSTYPE=solaris

Children: (none)
Input: test.c test.h /usr/include/sys/feature_tests.h /usr/lib/libc.so.1

/usr/local/lib/gcc-lib/sparc-sun-solaris2.5/2.7.2.f.1/include/stdio.h
/usr/lib/libdl.so.1 /usr/platform/SUNW,Ultra-1/lib/libc_psr.so.1

Output: /var/tmp/cca006u2.i
========
Parent ID: 28424 Program ID: 28426
Argv: gcc -c test.c
Envp: HOME=/homes/rivers/vahdat HOST=tolt HOSTNAME=tolt HOSTTYPE=sun4

LOGNAME=vahdat MACHTYPE=sparc OSTYPE=solaris
Children: 28428 28430 28432
Input: /usr/lib/libc.so.1 /usr/lib/libdl.so.1

/usr/local/lib/gcc-lib/sparc-sun-solaris2.5/2.7.2.f.1/specs
/usr/platform/SUNW,Ultra-1/lib/libc_psr.so.1

Output: (none)

Figure 3: This figure describes the results of a sample query, tracing back the lineage of the process that read the file
test.c .

skip the prompt and to automatically re-creat output files
when any input file is modified. However, such auto-
matic re-synchronization can produce undefined behav-
ior in the general case (e.g., users saving intermediate
versions of program source files that will not compile).
Of course, earlier work in optimistic make [Bubenik &
Zwaenepoel 1989] has demonstrated the value of creat-
ing output files in anticipation of user requests. Thus,
optimistic versions of output files could be created in
temporary directories; once the user requests an update,
a new version of the output file can be moved in place of
the old one instead of waiting for the file to be re-created.

3.3 Dynamic Web Caching

In this subsection, we describe a third TREC example,
dynamic web caching. This service is quite different in
motivation and implementation from both the previous
services, unmake and tmake. We begin by motivating
the need for dynamic web caching and go on to describe
how we modified an HTTP server to interact with TREC
in order to provide this service.

3.3.1 Motivation

In response to the exponential growth of packets across
the Internet, several researchers have proposed a number
of caching schemes both to reduce the load on Internet
backbones and to improve user response times [Gwertz-
man & Seltzer 1996, Chankhunthod et al. 1996, Zhang
et al. 1997]. One early study [Danzig et al. 1993]
found that strategically-placed caches could reduce FTP
file traffic by as much as 50%. Similar studies of
WWW traffic yielded similar results [Braun & Claffy
1994, Duska et al. 1997, Gribble & Brewer 1997].

We observe that any caching scheme will be limited by
the fraction of web pages that are dynamically gener-
ated, and hence classified as uncacheable. For example,
a CGI-bin program might be run to produce HTML in
response to a user query (e.g., what are the show times
at a movie theater) or to embed a different advertisement
in the same logical page based on the identity of the re-
quester. Approximately 20% of the queries to IBM's
Web server for the 1996 Olympic games resulted in the
dynamic generation of HTML (e.g., to get current medal
standings) [Iyenger & Challenger 1997]. In general, the
contents of such pages cannot be cached because the re-
sult of the program can change from execution to exe-
cution. Caching dynamic objects can be even more im-
portant for overall performance for the following rea-



sons: (i) An increasing percentage of web objects are
being dynamically generated, (ii) a program must be run
on the server side to generate such objects, increasing
server load and (iii) client latency is generally limited by
the minimum time required to run the program.

Our approach to reducing the overhead of busy web
servers is to cache dynamically generated pages, us-
ing TREC to manage invalidations. Limitations to the
type of dynamic objects that can be cached—for ex-
ample, those that access a database—are described in
Section 3.3.4. In this scheme, cache objects are stored
in the file system under the name of the program used
to generate them concatenated with any arguments to
the program. Thus, a request for the objecthttp://
www/cgi-bin/query?argument might be cached
locally in, for example, a file/usr/local/apache/
cache/cgi-bin/query?argument . Subsequent
accesses to the same CGI program with the same argu-
ment list can be returned from the disk cache, eliminat-
ing the need tofork andexec operations, and saving
any computation time associated with the requested pro-
gram. For example, consider user queries to a web site
providing movie show times. Caching is attractive in this
context because locality is likely present in the access
pattern (popular movie at popular theater) and because
the query results remain valid for an extended period of
time (e.g., one week).

Of course, one problem with caching dynamic objects is
maintaining cache consistency. The dynamically gener-
ated web objects often depend on a set of input files. For
example, a consumer web site might provide an inter-
face for users to interactively query for the latest pricing
and availability information. Dynamic object caching
can reduce server load by caching the replies to fre-
quently made requests. However, all cached copies must
be invalidated when pricing or availability information
changes. As another example, a news site may dynam-
ically generate a “front page” containing headlines and
synopsis of news stories. Caching is also useful in this
context since the same object will be delivered to all
users for a certain time period. Once again, however,
cached copies must be invalidated when the list of avail-
able stories is updated.

To address this need for invalidation, we use TREC to
profile the execution of programs creating dynamic web
objects. When TREC detects that an input file contribut-
ing to the creation of a cached object has been modified,
one of two courses of action can be followed: (i) the
file containing the cached copy of the web object is re-
moved, forcing the web server to re-create it on the next
user access, or (ii) the program which originally created

the cached object can be re-executed to bring the cache
up to date. Determining which approach is taken de-
pends on the popularity of the object in question, the
current load of the web server, and the cost of recomput-
ing the object.

3.3.2 Implementation

To investigate the utility of dynamic web caching as de-
scribed above, we modified Apache's HTTP server (ver-
sion 1.2.4) in the following way. When a CGI object is
requested, the server first checks for a file whose name
matches the CGI object name concatenated with any ar-
guments. If the file exists, its contents are returned with-
out spawning a new process to carry out the request. If
not present, a process is spawned to produce the desired
results. The program's output is written to a file in paral-
lel with the response to the requester. Currently, CGI ar-
guments are assumed to be transmitted on the command
line, corresponding to an HTTP GET request. In the fu-
ture, it should be straightforward to modify Apache to
include arguments transmitted in the HTTP header, cor-
responding to HTTP POST requests. Thus, subsequent
requests are able to use a cached copy of the CGI object.
File locking is used to ensure that partially generated re-
sults are not returned to users. We were able to make
these changes by modifying approximately 50 lines of C
code from the Apache distribution.

To allow for invalidations, the execution of CGI pro-
grams is profiled by TREC. Similar to transparent make,
the dynamic web caching module registers callbacks for
all files that act as input for CGI programs, requesting
notification when any of the target set of files are modi-
fied. When such a callback is received, all CGI objects
(cached output files) which depended on the modified
file are removed, forcing the server to regenerate the
result on the next user access. Since this level of de-
pendency checking cannot guarantee consistency for all
CGI objects (further discussed in Section 3.3.4), we al-
low the server administrator to specify a set of CGI pro-
grams that cannot be cached through an Apache config-
uration file.

3.3.3 Performance

To quantify the baseline performance benefits of caching
CGI-bin program results, we measured the performance
of retrieving CGI results for both our modified Apache
server and the original, unmodified version. The mea-
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Figure 4: This figure describes the relative performance
improvement introduced by CGI object caching.

surements were taken as follows. Eight Sun Ultra/1
workstations running Solaris 2.5.1 connected by a 10
Mb/s Ethernet switch were used for the experiments.
One of the machines acted as the HTTP server running
Apache 1.2.4. Between one and seven of the other ma-
chines acted as clients, continuously requesting the re-
sults of executing a small CGI script, printenv, which
simply prints out the environment variables of the run-
ning CGI script. Each client machine forked 40 copies of
the same script requesting 200 copies of the same script
in a loop. Given the small size of the requests and the
replies, network bandwidth was not the bottleneck.

Figure 4 describes the relative performance of the base-
line vs. the modified Apache server under the above
conditions. As a point of reference, the printenv script
takes .05 seconds to run locally. One client requesting
the CGI-script in a loop from unmodified Apache av-
erages .18 seconds per request. Using the caching ver-
sion of Apache, the CGI-script is retrieved in an average
of .11 seconds, a 39% improvement over the baseline.
From Figure 4, it is interesting to note that the relative
performance of the caching CGI server improves with
increased load. This improvement results from the high
overhead of managing and context switching between
address spaces as many CGI scripts are forked off by the
baseline HTTP server under load.

We expect the above performance disparity to become
even more pronounced as the CGI scripts become longer
lived (recall that printenv exits after .05 seconds). To
test this hypothesis, we re-ran our experiments with the
baseline (uncaching) HTTP server returning the contents
of a synthetic CGI program which takes 2.5 seconds to
execute. Forty clients on one machine averaged 153 sec-

onds to retrieve the object, while forty clients on each
of two machines averaged 167 seconds to retrieve the
object. Relative to the caching version of the server, the
overhead of forking and executing the program slows the
server down by nearly two orders of magnitude. Clearly,
the savings from caching become more pronounced as
the computation cost of the CGI object becomes more
expensive.

3.3.4 Applicability

Our discussion of dynamic web object caching focuses
on CGI programs. Given the inherent inefficiency of
spawning a new process for dynamically generated con-
tent, a number of systems, such as ISAPI [Microsoft
Corporation ], NSAPI [Netscape ], and FastCGI [Open
Market ], address this issue either by creating long-
lived “server” processes responsible for creating dy-
namic content or by linking dynamic content producers
into the servers address space. Relative to CGI scripts,
these approaches offer better performance but sacrifice
some of the simplicity of writing CGI scripts. However,
TREC can still be used to improve the performance and
functionality of these faster dynamic systems. For exam-
ple, using TREC can eliminate the computation time as-
sociated with long-running scripts and any inter-process
communication necessary to request dynamic generation
of web objects. Thus, while TREC's baseline perfor-
mance improvements would not be as impressive rela-
tive to systems that avoid fork and exec overhead, TREC
still maintains the advantages of (i) using the familiar
file system interface to cache content and (ii) eliminating
any computation time required for dynamically generat-
ing web objects.

Another potential limitation of TREC for dynamic web
object generation is the fact that many dynamic ob-
jects are generated as a result of queries to full-fledged
databases. In essence, many web servers act as front
ends to a sophisticated DBMS. For example, a user
query for a price quote or item availability often trans-
lates into a database query. Since access to database
relations cannot in general be modeled by simple file
accesses (many databases are implemented on top of
raw disks as opposed to the file system for example) ,
TREC cannot catch database updates, and hence can-
not properly invalidate web objects based on out-of-date
database values.

While the above limitation is inherent, we believe the
performance improvements available from dynamic ob-
ject caching argues for further research into active



databases. For example, research efforts intomateri-
alized views[Gupta et al. 1993, Gupta & Mumick
1995, Colby et al. 1996, Kawaguchi et al. 1996] in
active databases [McCarthy & Dayal 1989, Stonebraker
et al. 1990, Widom & Finkelstein 1990] has resulted
in support for such views in many commercial database
systems. Materialized views allow the results of a query
to be updated as the tables (and individual cells) used
to create the view are updated. Techniques similar to
those employed by TREC are used to track view depen-
dencies on individual cells and tables, and to set “trig-
gers” to be fired when a table is modified so that any
derived views can be updated as well. An interesting
avenue of future research is to evaluate whether materi-
alized database views can be used to cache the portion
of dynamic web objects that generate database queries
to obtain their results.

Another limitation faced by dynamic object caching is
that, as described, TREC profiling and invalidation only
allows for caching on the server-side. If such caching
could be extended to Web proxies, performance could
be further improved by caching dynamic objects closer
to clients, potentially reducing both consumed wide-area
bandwidth and user-perceived latency. One approach to
addressing this limitation is to use a wide-area file sys-
tem such as AFS [Howard et al. 1988] or WebFS [Vah-
dat et al. 1998] to store and to cache dynamic web ob-
jects as normal files. Thus, the wide-area file system can
act as a shared file cache for both the HTTP server and
interested proxies, with TREC invalidations maintain-
ing relatively strong consistency semantics. Another ap-
proach is to allow proxy caches to cache dynamic objects
with a TTL-based invalidation scheme [Chankhunthod
et al. 1996, Gwertzman & Seltzer 1996, Squ 1996].
While this approach provides weaker consistency se-
mantics, it is easier to deploy given the current Web in-
frastructure.

4 Related Work

Several systems have attempted to extend the automatic
control of derived objects beyond the simple (but pow-
erful) model used bymake. DSEE [Leblang & Chase
1984, Leblang & McLean 1985], Odin [Clemm & Oster-
weil 1990] and Vesta [Levin & McJones 1993, Heydon
et al. 1997] provide tools for modeling the behavior of
programs, enabling the concise specification of deriva-
tion rules, and distributing changes to developers. Their
declarative style suits large-scale programming environ-
ments, which are highly structured and employ a well-

defined set of tools (compilers, linkers, etc.). None of
these tools provide any assurance of correctness; as with
make, the user is responsible for describing the com-
plete set of dependencies relationships to the configura-
tion manager. In contrast to unmake, users of these sys-
tems must tell the system how tools use files, whereas
unmake simply observes and gathers the information in
the background.

Odin relies heavily on the use of naming conventions:
the name of a file fully specifies how it was derived. This
restriction would not work well for the ad-hoc, highly
parameterizable methodology used in less-structured en-
vironments. Like tmake, Odin implements transparent
re-creation of files. A sentinel in Odin is a data ob-
ject that is automatically regenerated (if necessary) at the
time a user requests it, based on rules that were specified
in advance for objects of its type.

VOV [RTDA ], a configuration management toolkit, is
similar to TREC, in that it observes program invoca-
tions to generate a trace of lineage information. How-
ever, VOV is limited to a specialized application do-
main (Electronic CAD), and it requires assistance from
tool programmers. Each tool explicitly reports the files
it will read and write. By contrast, unmake observes
file-system activity at a low enough level that modify-
ing tools to work with TREC is unnecessary.

Recently, a large body of research is being conducted
in web caching. Harvest [Chankhunthod et al. 1996]
and Squid [Squ 1996] are efforts into hierarchical web
proxy caching. We believe that such caching efforts
would benefit from our work in dynamic object caching.
Gwertzman and Seltzer [Gwertzman & Seltzer 1996]
recently proposed using the Alex protocol [Cate 1992]
for maintaining cache consistency across the wide area.
While this protocol provides weaker consistency guar-
antees than a wide-area file system, it would be simpler
to deploy and could be used in our model for caching
dynamic web objects at proxy caches. Finally, one pro-
posal advocates using HTTP profiles to predict accesses
to dynamically generated data, allowing servers to pre-
generate potentially expensive pages in anticipation of
user requests [Schechter et al. 1998].

Iyenger and Challenger [Iyenger & Challenger 1997]
have implemented a caching system and API as part of
IBM's web server that allows for caching of dynamic
data. Their system allows for caching of dynamic data
generated by arbitrary programs. Their work requires
explicit invalidation of dynamically-generated content
by the Web server, whereas TREC takes steps to auto-
mate this procedure. Further, TREC caches dynamic ob-



jects as normal files, simplifying system integration with
existing Web servers.

The performance results presented in Section 2.2 here
are similar to overhead studies of process migration
and remote execution in Sprite [Douglis & Ousterhout
1991]. In Sprite, a number of system calls must be for-
warded to the “home node” of a job for local process-
ing. While the overhead of these operations in isola-
tion is high, the overall perceived slowdown is tolerable
because of the low frequency of forwarded operations.
Similar to TREC, I/O system calls such asread and
write are processed locally in Sprite.

5 Conclusions

The task of managing interactions between input and
output files can be difficult. Further, the task of manually
specifying such dependencies can be tedious and error-
prone. We address this problem by introducing Trans-
parent Result Caching (TREC), which automatically and
transparently constructs dependency information by ob-
serving program behavior. To demonstrate its utility,
we have described, built, and evaluated three sample
TREC applications. Unmake allows users to query for
process lineage information, returning the full chain of
processes, command line parameters, and environment
variables used to create a file. Transparent Make uses
the process lineage information from Unmake to provide
functionality similar to UNIXmake, with the added ad-
vantage of freeing users from manually specifying file
dependencies. Finally, Dynamic Web Object Caching
allows web servers to coherently cache the results of dy-
namic web content such as CGI programs, with the po-
tential of reducing server load and client latency.
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