
The following paper was originally published in the
Proceedings of the USENIX Symposium on Internet Technologies and Systems

Monterey, California, December 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Alleviating the Latency and Bandwidth Problems
in WWW Browsing

Tong Sau Loon and Vaduvur Bharghavan
University of Illinois at Urbana-Champaign



Alleviating the Latency and Bandwidth Problems in WWW

Browsing

Tong Sau Loon Vaduvur Bharghavan

Department of Electrical and Computer Engineering

& Coordinated Science Laboratory

University of Illinois at Urbana-Champaign

fs-tong,bharghavg@crhc.uiuc.edu, http://timely.crhc.uiuc.edu/

Abstract

This work addresses three problems that are as-
sociated with Web browsing: (a) low bandwidth
available to the end user who is connected via slow
modems or outdoor wireless networks, (b) long and
variable latencies in document access, and (c) tem-
porary disconnections of mobile users. Three tech-
niques are used with a variety of heuristics in or-
der to overcome these problems: (a) pro�ling user
and group access patterns and using these pro�les
in order to pre-fetch documents, (b) �ltering HTTP
requests and responses in order to reduce data trans-
mission over bottleneck links, and (c) hoarding doc-
uments based on user pro�les in order to support
limited web browsing even during disconnection. In
this paper, we describe the design and implemen-
tation of a WWW proxy-based system that incor-
porates the above techniques. We describe our ex-
periences with the proxy system, and present per-
formance results that show an improvement in the
experience of Web browsing using this system.

1 Overview

In the last few years, the World Wide Web has had
a remarkable e�ect on computing and communica-
tions in general, and Internet tra�c in particular.
Due to the explosion of the o�ered network load
and the inherently best-e�ort paradigm of Internet
service, WWW users typically notice long laten-
cies and large variations in latency for web accesses.
The scarcity of network bandwidth, particularly of
the last link for users connected via low bandwidth
modems and outdoor wireless networks exacerbates
the latency problem, as does the transmission of
increasingly graphics-oriented documents over slow
networks. Mobile users face additional challenges in
terms of frequent disconnections. In order to solve

the above problems, we have built a WWW proxy-
based distributed system which is compatible with
existing browsers and protocol standards. This pa-
per presents the design and implementation of our
system and shows the performance improvements
we obtained using this system in conjunction with
our standard browsing environment.

Three problems motivate this work: (a) low band-
width available to the end user who is connected
via slow modems or wireless networks, (b) long and
variable latency due to congestion in the network,
best-e�ort service in the Internet, and transmission
of large amounts of data over slow links, and (c)
temporary disconnections of mobile users - either in-
voluntary due to fades, or voluntary to save cost and
battery power. In order to �nd e�ective solutions
to the above problems, our work is based on three
key observations: (a) User accesses to WWW doc-
uments have been shown to follow certain patterns,
albeit changing over time [8] - these changing pat-
terns can be learned by monitoring user accesses and
used for both pre-fetching and hoarding. (b) Most
large documents are graphics-intensive and graph-
ics data can tolerate loss - thus, �ltering images can
signi�cantly reduce data transmission without com-
promising severely on quality. (c) Groups of users
with similar interests tend to access similar docu-
ments - the commonality of their access patterns
can be learned by monitoring their access patterns.
It should be noted that none of the above techniques
are unique to our work. Caching of documents based
on recent history of accesses is provided with most
browsers (e.g. Netscape, Explorer). Intelligent pre-
fetching based on document hyper-links and user ac-
cess patterns have been proposed in several studies
[3, 8, 9]. Filtering in order to adapt to dynamic net-
work quality of service has been proposed in related
work, both in the context of WWW accesses and
in the context of application adaptation in general



[7, 16, 21]. Collaborative �ltering has been proposed
in the context of newsgroups [10] as well as WWW
[1]. Hoarding has been proposed in the context of
�le systems support during disconnected operation
[14]. The contribution of this paper is the combina-
tion of several mechanisms and the use of multiple
heuristics in order to intelligently pre-fetch docu-
ments (based on user pro�les, group pro�les, and
associated heuristics), �lter documents (adaptively
to varying QoS), and hoard documents anticipat-
ing disconnection (based on a hoard database that
is learned over time as well as a user-de�ned hoard
�le). Performance results show that our system can
learn and adapt to changing user behavior quickly,
and signi�cantly improve the experience of WWW
browsing once the user pro�le is learned.

The rest of the paper is structured as follows. Sec-
tion 2 describes the architecture of the system. Sec-
tion 3 discusses the various heuristics employed in
order to improve e�ciency. Section 4 provides im-
plementation details, while Section 5 presents per-
formance results. Section 6 compares related work
to our approach, and Section 7 concludes the paper.

2 Architecture of the WWW Proxy

System

The three key aspects of our system design are
pre-fetching documents based on user and group
pro�les, �ltering retrieved documents based on the
available network quality of service, and hoarding
documents in anticipation of network disconnections
(for mobile users). For pre-fetching and hoarding to
be e�ective, the cached copy of the documents must
be as close to the browser as possible. For �lter-
ing to be e�ective, it must be done as close to the
server as possible; in particular, �ltering needs to be
performed before the bottleneck link on the retrieval
path of the client, while pre-fetching and hoarding
need to be done after the bottleneck link.

In the ideal case, a server would have a set of �l-
ters associated with a document type. A client re-
quest would be accompanied with the measured net-
work quality of service. The server would then re-
trieve the document and pass it through the �lter
(with the QoS level as a parameter) before sending
it back to the client. The advantage of this design is
that only the required data is sent over the network,
thereby decreasing the latency of access. Besides, if
the user has to pay for receiving data over the net-

Client HTTP
Requests and
Responses

Regular and Pre-Fetch HTTP 
Requests and Filtered Responses

Pre-Fetch
Requests

Local Profile
Engine

HTTP Request
Filter

HTTP Response
Filter

Document
Pre-Fetch
Recommendations

Group

Local proxy server
co-located with the web browser.

Pre-Fetch
Requests

HTTP
Requests and
Responses

Group and Individual

Pre-Fetch Lists
Pre-Fetch

Lists

Client Browser

Local Cache Manager

Backbone

WWW

Server
HTTP Request

HTTP Response

LEGEND

Cache Manager
(Proxy Server)

Pre-Fetch Engine

Local Pre-Fetch
Engine Backbone

Profile Engine
Backbone

Backbone proxy server.

Control Information

1 2

3

4

5
6 Profile

Updates

7

8

9

10

11

12

13

14

15 16

Figure 1: System Model

work (proportional to the amount of data received),
this mechanism can reduce the cost of Web access.
The disadvantage of this design is that it requires
QoS aware servers, and also places the burden of
�ltering on the server.

In cases where the user is connected to the network
via a slow modem link or an outdoor wireless link,
the last link typically happens to be the bottleneck
link in the retrieval path. In this case, �ltering the
document before the last link may work just as well
in reducing latency and maybe cost. Since this does
not require any change in the server, we use this
model for our system.

The architecture of our WWW proxy system is
shown in Figure 1. A WWW browser points to a
local proxy server, through which all requests are
routed. The local proxy server contains an HTTP
request �lter, a pro�le management engine, a pre-
fetching engine, and a cache manager. The local
proxy server points to a backbone proxy server.
Thus, the local proxy server acts as a server to the
browser but as a client to the backbone proxy server.

The backbone proxy server essentially contains the
same components as its local counterpart, but may
service multiple users. The backbone proxy server
thus handles both group pro�les and individual pro-
�les while the local proxy server handles only indi-
vidual user pro�les.

In order to e�ectively manage the usage pro�le, all
user accesses must traverse through the local proxy
server; thus, the browser's cache is disabled. This is
because some HTTP requests would be intercepted
by a browser cache if it were not disabled, and the



local proxy server would not be able to learn the
access pattern properly.

Pro�le-based pre-fetch is performed at both the lo-
cal proxy server and the backbone proxy server, al-
though the backbone proxy server does a more ag-
gressive pre-fetch (more documents). Hoarding is
done by the local proxy server. Filtering is done on
both HTTP requests (e.g. to reduce HTTP head-
ers) and HTTP responses (e.g. to clip images). The
WWW server is not required to have any special
functionality that is speci�c to our system.

2.1 HTTP Request/Response Paths

In this section, we provide an overview of each of
the components in the architecture by means of an
example of an HTTP request/response path. We
then describe the functionality of each component
in the system.

The numeric steps below refer the the steps shown
in Figure 1:

1. When the user requests a document, the
browser issues the request to the local proxy
server.

2. This request �rst goes through an HTTP re-
quest �lter. The request may be immediately
satis�ed (e.g. if the request is for a site that
is blocked out, such as advertisements), may
be modi�ed (e.g. header compression [13]), or
may be passed through without modi�cation.
Determination of �lterable requests is based on
substring matching of URLs to key strings and
running corresponding scripts de�ned in a con-
�guration �le.

3. If a response was not generated immediately,
the request is logged by the local pro�le man-
ager and the user pro�le is updated.

4. The request is then passed on to the cache man-
ager.

5. The pro�le manager will create a pre-fetch list
based on the usage pro�le and send it to the
pre-fetcher.

6. Requests which change the pro�le, speci�cally
URLs which point to HTML pages, are sent to
the backbone pro�le engine to enable backbone
aggressive pre-fetches and to update the back-
bone pro�les. Note that the use of an explicit
connection to send the pro�le updates is mainly

for ease of implementation. A more e�cient
mechanism would be to piggy-back such data
on HTTP requests that gets transmitted from
the local proxy server to the backbone proxy
server.

7. Periodically, the backbone pro�le engine re-
turns a list of recommended pages to pre-fetch
based on group pro�les. This can occur when
many users of a particular group visit a partic-
ular page. Similar to above, such information
can be piggy-backed onto HTTP responses in a
more e�cient implementation.

8. The recommended URLs are operated on by a
function in the HTTP request �lter to eliminate
URLs that would be �ltered (i.e., we do not
want to pre-fetch items that we will �lter). This
new list is submitted to the pre-fetcher.

9. The pre-fetcher collates the pre-fetch list and
group document pre-fetch recommendations
that are found to be not �lterable. It then
amortizes the pre-fetch requests to the cache
manager.

10. If the cache has a fresh copy of the document
originally requested, the request is satis�ed im-
mediately.

11. Otherwise, the request is forwarded to the
backbone proxy server.

12. The normal HTTP transaction occurs between
the backbone cache manager and the WWW
server.

13. After retrieval, the document is passed through
the backbone HTTP response �lter.

14. The response is sent back to the local cache
manager, who will cache the document if it is
a cacheable item. It is then sent back to the
browser (10).

15. The backbone pro�le manager maintains indi-
vidual as well as group pro�les. Periodically,
it creates a list of recommended group docu-
ments and sends it to the local proxy server
(7) of each member of the group. As pro�le
updates arrive, it creates a list of documents
to pre-fetch based on individual and group us-
age pro�les. The only di�erence from the local
pre-fetch list is that the backbone list is longer
(i.e., we do more aggressive pre-fetches on the
backbone). This list is then submitted to the
backbone pre-fetch engine.



16. The backbone pre-fetcher will issue the neces-
sary pre-fetch requests.

2.2 HTTP Request/Response Filters

The �lter engines are responsible for modi�cation
of HTTP requests and responses in order to reduce
data tra�c over the bottleneck link. Typical exam-
ples of �ltering include reducing the color depth of
images, clipping images, transmitting parts of au-
dio �les only, transmitting the �rst few words of
each paragraph in a document, reducing the HTTP
request header, suppressing requests to documents
from a particular server, etc. Every user has his/her
own HTTP request �lter and HTTP response �lter.

Invocation of the appropriate �lter is accomplished
by means of a rules database. A rule in the database
speci�es the invocation of a �lter based on its docu-
ment type, available network quality of service, size
of the document, etc. The goal of the rules database
is to allow adaptive �ltering based on dynamic net-
work conditions and data types. While the set of
rules in the rules database is currently small, the
architecture allows for more sophisticated �ltering.

The HTTP request �lter also noti�es the user of
the documents that are pre-fetched via a well-known
URL. That is, it intercepts a well-known URL and
formulates an HTML page which represents the pre-
fetched items in the cache. This allows the user to
see which URLs have been pre-fetched and manually
set or modify the list.

2.3 Usage Pattern Pro�le

A usage pro�le is a representation of a user's or
group's usage pattern of the Web. The pro�le
is learned over time by monitoring the stream of
HTTP requests of users. Using the pro�le to de-
termine which documents to pre-fetch, rather than
simply using the document layout, can signi�cantly
improve the e�ciency of pre-fetching. The usage
pro�le is a directed weighted graph, where the nodes
represent URLs and edges represent the access path.
The weight of a node u indicates the frequency of
access of the corresponding URL, while the weight
of an edge (u,v) indicates the frequency of access of
the URL v immediately following the URL u. In or-
der to re
ect the changing access patterns of users
and the temporal locality of accesses, recent history
is given precedence in the weighting heuristic.

Let nt(u) represent the number of accesses of node

u (i.e. the URL corresponding to node u) during
the time interval t, nt(u; v) represent the number
of accesses of node v immediately following node u,
wt(u) represent the weight of node u after the time
interval t, and wt(u; v) represent the weight of edge
(u; v) after the time interval t. The weights of nodes
and edges are computed as follows:

� wt+1(u) = wt(u):�1 + nt(u):�1

� wt+1(u; v) = wt(u; v):�2 + nt(u; v):�2

where �1, �2, �1, and �2 are constants which in-
dicate the relative weights of recent history versus
past history. These constants, along with the time
window t, play a key role in determining how e�ec-
tively the pro�le adapts to the changing user access
patterns. Modifying these parameters will deter-
mine whether the pro�le does long term adapta-
tion or short term adaptation. Based on our own
experience, we have currently set �1 = 0:9; �1 =
0:1; �2 = 1:0, and �2 = 1:0. This means that we
have set a very high weightage to previous history.
This is because we wanted our system to be insen-
sitive to spurous bursts of visits to sites that will
not be visited again i.e. long term adaptation. We
have set t to be the time between two successive ses-
sions. This means that the weights are recalculated
at the beginning of every Web session. While the
current values of the constants are based on what
worked for our usage pro�les, we plan to do more
experiments in order to determine the weights in the
graph. While our weights are determined solely by
frequency of access, we plan to use the following pa-
rameters for determining weights in the future: per-
centage of membership that uses an edge or node for
group pro�les, expected latency, liveliness of docu-
ments, and size.

Group usage pro�les are a natural extension of the
idea of exploiting individual usage pro�les to predic-
tively pre-fetch documents. They also �t naturally
into collaborative �ltering of documents discussed
in [10]. Group usage pro�les are inherited by users
that join the group. Thus, a new user would �rst en-
roll in several groups. This will ensure that there is
some form of informed speculative pre-fetch service
for the user while his/her own usage pattern is being
learned by the local pro�le engine. In addition, as
the interests of the group change over time, the user
will be able to inherit the changes automatically.

In the case of group pro�les, we keep more state. In
particular, we are interested in the number of mem-
bers in a particular group who have visited a par-
ticular URL and who have used a particular edge.



This allows us to make recommendations on which
URLs to pre-fetch. For example, if more than 50%
of the group uses a particular edge (u; v), then we
recommend v when a member of the group visits u.

While individual pro�les are used for predictive pre-
fetches, group pro�les serve two purposes. First,
a group pro�le is inherited by a new member to
a group, hence, while his/her individual pro�le is
being learnt, it is still possible to predictively pre-
fetch. Second, group pro�les are useful for notifying
a member of pages that most of the other members
of the group are visiting.

2.4 Pro�le Engines

The local pro�le engine is mainly responsible for
maintaining a single user's usage pro�le. It receives
�ltered HTTP requests from the HTTP request �l-
ter and then updates the pro�le. It then creates a
pre-fetch list based on the pro�le and submits the
list to the local pre-fetcher. At the same time, the
local pro�le engine updates the backbone pro�le en-
gine.

The backbone pro�le engine is responsible for main-
taining individuals' pro�les as well as group pro�les.
After it receives an update from the local pro�le en-
gine, it creates a (longer) list of items to pre-fetch
based on the individual's pro�le and submits it to
the backbone pre-fetcher. Note that the list based
on individual pro�le is longer because we want to
ensure that items are readily available at the back-
bone proxy server, should it not be found in the local
cache. It also creates another pre-fetch list based on
the groups that the user has subscribed to. This list
is then submitted to the backbone pre-fetcher. Peri-
odically, a list of recommendations are sent back to
the local proxy server. Note that instead of push-
ing the document directly to the user, we employ
the use of a noti�cation system with the local proxy
server making the �nal decision of whether to pre-
fetch a document or not. This pull with noti�cation
mechanism is more 
exible than a pure document
push from the backbone proxy server because the
user might not need all the documents.

2.5 Pre-fetch Engines

The local pre-fetch engine's main responsibility is
to issue pre-fetch requests to the local cache man-
ager based on the lists obtained from the local and
backbone pro�le engines. The recommendation list
that arrives from the backbone pro�le manager goes

through the local �lter �rst, in case there are some
documents that the individual wishes to block out.
It then amortizes the pre-fetch requests over time
so that the local cache manager does not get over-
loaded. At the same time, the local pre-fetch engine
makes sure that duplicate items are not pre-fetched.

A special case of pre-fetch is hoarding, which is done
only by the local pre-fetch engine. In the case of
hoarding, only the node weights are used in order
to pre-fetch the documents that the user is most
likely to require in the future. As in the case of dis-
connected �le systems, this gives rise to the problem
of caching versus hoarding. An approach similar to
hoard-walking [14] is used in order to refresh com-
monly used items.

It should be noted that on the local machine, user
requests are given priority over pre-fetch requests.
That is, no pre-fetch requests are issued until there
are no pending user requests.

The backbone pre-fetch engine's main responsibil-
ity is to issue pre-fetch requests based on the list
obtained from the backbone pro�le engine. Note
that multiple lists can be submitted to the back-
bone pre-fetcher if there are multiple users logged
on. The backbone pre-fetcher will ensure that du-
plicate items are not pre-fetched and that pre-fetch
requests are amortized over time.

2.6 Cache Manager

Each proxy server has a cache manager which main-
tains a cache of documents available as a result of
user requests, pre-fetches, and hoard-walks. When
the proxy server receives a request, if the document
is not available at the cache, the request is forwarded
to the next level of proxy or directly to the WWW
server. Note that the browser cache is disabled,
since all user requests must go through to the lo-
cal proxy server in order to build an accurate user
pro�le.

Should disconnections arise, the local cache man-
ager is also responsible for providing the documents.
In our system, if any control connection with the
backbone machine is broken prematurely, the local
proxy server will go into a disconnected mode. In
this mode, it will only present to the browser the
items on the local cache. If a request is made for
an item that was not hoarded, the local cache man-
ager returns an empty �le. The browser will then
present a \Document contains no data" message to



the user.

The backbone cache manager is any standard o�-
the-shelf proxy server. In the current implementa-
tion, we use Squid [4].

3 Performance Enhancing Heuristics

We used several heuristics in order to improve the
e�ciency of pre-fetching. While many of the heuris-
tics listed below are simple and intuitively obvious,
we found that a combination of these heuristics pro-
vided a remarkable performance improvement in our
daily operation. This section lists the heuristics we
used.

1. Web Sessions: The notion of a Web session had
one of the greatest performance impacts. With-
out the notion of a session, the pre-fetch engine
re-issued multiple requests for the same docu-
ments if a user accessed the same pages again
later in the session. With the notion of a ses-
sion, documents are only fetched once during
the session. Subsequent requests are satis�ed
from the cache, unless the user explicitly re-
quests a fresh access using the RELOAD but-
ton (which issues a HTTP \Pragma: no-cache"
header). At the start of a session, documents
with the highest node weights are hoarded.
The idea of Web sessions is not new. Current
browsers all have a notion of a Web session.

2. Hoard walking: Hoard-walking [14] periodically
refreshes pages with the highest node weight.
Since hoard-walking involves pre-fetching the
pages in the user de�ned hoard �le as well as the
most heavy nodes in the learnt database, conse-
quently, a large fraction of typical user accesses
can be satis�ed locally during disconnection.

3. Issue Of Pre-Fetch Requests: Pre-fetches are
performed only when the network is \idle". In
our system, only four ongoing pre-fetches are
allowed at any time at the local proxy server
and only eight ongoing pre-fetches are allowed
at any one time in the backbone proxy server.
Furthermore, on the local proxy server, pre-
fetches are not started until there are no pend-
ing user requests. We observed performance
improvements when we amortize pre-fetch re-
quests. Of course, not issuing pre-fetch requests
while there is a pending request might actu-
ally lower performance, especially in the case
of requests with high delays. However, giving

priority to user requests eliminates the harmful
e�ects of pre-fetch tying up bandwidth when it
is needed.

4. Weighting edges: Using weighted edges as op-
posed to only using node weights for pre-fetches
ensures that the proper usage pattern is cap-
tured. When a user visits a URL, we should
choose the edge with the heaviest weight rather
than the adjacent node with the heaviest node
weight. For example, consider the following
scenario: C was visited 2 times from A and 100
times from B. B was visited 10 times from A.
When a user is at A, B should be pre-fetched
even though it has a smaller node weight than
C.

5. Dynamically determining a document's depen-

dents: We distinguish a document from the
images that are linked to it (which constitute
its dependents). Dependents do not appear in
the user pro�le, because they are accessed au-
tomatically upon access of the document, and
also because they change frequently over time.
The original implementation stored the URLs
of the dependents. However, due to the fre-
quent changes in HTML documents, requests
were being made for non-existent documents.
This heuristic removed all those redundant pre-
fetch requests, at the same time keeping the
user pro�le graph small. Furthermore, pre-
fetch requests for dependents are issued (at
both the local proxy server and the backbone
proxy server) before the browser issues them.

6. Continued download of document: Even after
the user speci�es \stop", we continue down-
loading a document in the local proxy server.
This allows a user to click on another page
while the previous page is being downloaded in
the background. It also serves as a crude form
of short-term user-speci�ed hoarding or \user-
driven pre-fetch". Even though this is not cap-
tured in the performance tests, we found it ex-
tremely useful when we were reading a page
with links we knew we wanted to visit. We
would click on the link and quickly press stop.
This would issue the pre-fetch request but keep
the browser on the current page. Later, when
we eventually clicked on the page, it came up
instantly.

7. CGI scripts: CGI and other dynamic pages
are pre-fetched and retained in the cache for a
short period of time. Currently, CGI pages are
not cached either in browsers or proxies; thus



CGI latency is not hidden. However, with this
heuristic, we can pre-fetch CGI pages and cache
them for short periods of time in anticipation
of an access. A CGI page is deleted upon the
timeout, or after it is read once.

8. HTTP Redirections: HTTP response codes 301
and 302 indicate that a particular URL has
moved. If the local proxy system detects this,
it will store the redirection and provide the cor-
rect response to the browser. This prevents the
browser from reconnecting to the server.

9. Thresholds: Since many documents are only ac-
cessed once from a parent document (e.g. a
news item from a topic), we impose a mini-
mum threshold edge frequency in order to pre-
fetch the node. Another threshold we impose is
the size of documents. Large documents (more
than 1 megabyte) are not pre-fetched in our
current implementation. However, we antici-
pate that with the inclusion of size as a weight
parameter, this heuristic will be subsumed in
the weighted edge heuristic.

4 Implementation

The WWW proxy caching system is written in C++
in the Linux environment. On the local machine,
the user needs to run only one process, the local
proxy server called localCache, in addition to the
browser itself. On the backbone server, several pro-
cesses need to be run. These are the backbone cache
manager squid [4], the HTTP response �lter �lterd,
the backbone pre-fetch engine pfetcher, the back-
bone group pro�le manager gpm, and the backbone
communication surrogate bcs which talks to local-

Cache. We will describe these processes in more
detail next. It must be noted that other than squid

[4], all the other processes can be combined into a
single one that spawns into di�erent modules. The
use of di�erent processes is purely to ease debug-
ging. In essence, �lterd and bcs keep states about
the current session. The rest of the processes keep
state about the backbone proxy server.

4.1 Local Proxy Server

The local proxy server, localCache, implements all
the di�erent parts of the local proxy server shown
in Figure 1. Speci�cally, the HTTP request �lter
is implemented as a method call that does sub-
string matching on HTTP requests and invokes
scripts to create HTTP responses based on the rules

database. The local pro�le engine is implemented
as a class (a directed graph with weighted edges)
which trims itself when the number of nodes grows
too large. Currently, it trims itself when the num-
ber of nodes reaches 1024. It does so by removing
half of the nodes (512) that are lightest according
to the weighting method we described earlier. The
local pre-fetch engine is implemented using a queue.
The local pro�le engine feeds the queue with URLs.
When a pre-fetch request is issued, the URL is re-
moved from the queue and placed into a session set.
The same URL will then no longer be pre-fetched,
even if it was placed in the queue again. The local
cache manager is implemented as a class that inter-
faces a URL to a disk �le via a hashing function.
Currently, HTTP response headers are also stored.
In addition to disk store, we also keep a copy of pre-
fetched items in virtual memory. This is more for
ease of implementation than for performance. An
optimized version of the program can use just the
disk store and thus leave a small memory map.

Of particular interest with the local cache manager
is the determination of an item's expiry time. Let
t expire, t date, and t last modified be times
(in seconds) extracted from the respective HTTP
response headers. If a header is not available, the
variable defaults to 0. Further, let HTML expire and
IMAGE expire be the times (in seconds) the user
provides. These times specify how long the user
wants an HTML �le or an image �le to stay fresh in
the absence of some/all of the above HTTP response
headers. Let t now be the current time in seconds at
the local machine and expire be the time when the
document expires. The algorithm for determining
the freshness of an item in the local cache manager
is as follows:

if (t_expire>0 && t_date>0)

expire = t_expire - t_date + t_now;

else if (t_last_modified>0 && t_date>0)

expire = (t_date - t_last-modified)/2 + t_now;

else if (t_last_modified>0)

expire = (t_now - t_last_modified)/2 + t_now;

else if (HTMLDocument(url))

expire = HTML_expire + t_now;

else

expire = IMAGE_expire + t_now;

4.2 Backbone Proxy Server

For the backbone cache manager, we use squid [4].
However, any proxy server that understands stan-
dard HTTP/1.0 should work, since all communica-
tion with the backbone cache manager occurs via
HTTP/1.0 requests.



The HTTP response �lter is implemented in the pro-
cess �lterd. �lterd reads a con�guration �le upon
being started by a running copy of bcs. The con-
�guration �le indicates what scripts to run on what
kinds of responses. For example, JPEG �les might
require the script jpeg�lter. �lterd listens to a well
known port for incoming HTTP requests. It then
forwards all requests to squid [4]. After it receives
the response from squid [4], it checks to see if the
response is �lterable. In the above example, if the
response �le is called picture.jpg, �lterd will issue the
command:

jpegfilter picture.jpg tempfile.nam QoS

The script is expected to produce the �ltered re-
sponse in temp�le.nam based on the QoS param-
eter. �lterd then makes necessary changes to the
HTTP response headers and sends the new response
back. Basically, �lterd maintains the state of pend-
ing HTTP requests, responses, and the connection
to the local cache manager and squid [4].

The QoS parameter measures the quality of ser-
vice of the network connections between the local
proxy server and the backbone proxy server along
two somewhat orthogonal dimensions: rate and de-
lay. Periodically, the local proxy server measures
the HTTP request-response round trip time (RTT)
for a request and signals the backbone proxy server
to do the same for the same request. (This is done
via piggy-backed HTTP headers.) The di�erence
in the measured RTTs at the local and backbone
proxy servers gives an RTT estimate for the HTTP
request. By �tting a curve over a sequence of such
measurements, the local proxy server can estimate
the rate and delay QoS parameter. These values
are then transmitted to �lterd and fed back into the
local HTTP request �lter.

The backbone pre-fetch engine pfetcher keeps state
of all current Web sessions. It is able to do this
because every copy of bcs connects to it. It also
maintains a queue of URLs that it feeds (as HTTP
requests) to squid [4]. Each running copy of bcs will
send their own pre-fetch list. pfetcher will amortize
these pre-fetch requests to squid [4]. As pre-fetch
responses arrive, pfetcher will determine the depen-
dents and issue more pre-fetch requests if necessary.

The backbone group pro�le manager gpm keeps
track of all the groups which have their group pro-
�les stored on that particular backbone server. It
also maintains the list of members of each group. It
acts as a query-response server to the group pro�les
database. When a running copy of bcs informs gpm

0.0001

0.001

0.01

0.1

1

10

100

1000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

"ratio.urlRequestTimes.plot"
100

10
1

0.1
0.01

0.001
0.239572

Figure 2: Ratio of individual URL request times. X-axis rep-
resents each of the 2000 URLs. Y-axis represents the ratio of
delay of each URL with the proxy system to the delay with only
squid [4].

where its user is currently located, gpm will update
the group pro�les of all the groups that the user is
subscribed to. It then returns a list of recommen-
dations based on the updated group pro�les to bcs.

The backbone communication surrogate bcs is a
forking process that forks itself for every new Web
session by a di�erent user. It maintains the per-
user states. That is, it maintains the user pro�le,
the groups a user belongs to, and the user's cur-
rent QoS. It updates gpm about the movements of
the user and obtains a pre-fetch list from it when it
wants to recommend pages to the user. It connects
to pfetcher and sends it a list of items to pre-fetch
based on the user's individual pro�le. This is for
the aggressive backbone pre-fetch. It also spawns
the user's HTTP response �lter, i.e. �lterd.

5 Performance Measurements

Performance of the system was evaluated with a
browser simulator called surf. surf reads a text �le
containing a list of URLs to access. It then issues
HTTP requests for each of the URLs and fetches the
dependents if necessary. surf simulates user reading
time by sleeping an amount of time proportional to
the HTML �le size without the HTML tags. This
is called the readspeed. If a URL is not retrieved
within a certain amount of time, the whole URL
is abandoned. This is speci�ed by the impatience

parameter and is used to detect Web sites that are
down. There is also the caching version of surf called
csurf. The only di�erence is that csurf fetches every
unique URL only once per session. This simulates
the internal browser cache.



0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80 90 100

"ratio.bandwidth.plot"
1

2.04919

Figure 3: Ratio of session HTTP bandwidth. X-axis represents
each of the 100 sessions. Y-axis represents the ratio of the HTTP
bandwidth of the session with the proxy system to the HTTP
bandwidth of the session without the proxy system.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10 20 30 40 50 60 70 80 90 100

"ratio.delay.plot"
1

0.620469

Figure 4: Ratio of average HTTP request delay. X-axis repre-
sents each of the 100 sessions. Y-axis represents the ratio of the
average request delay of the session with the proxy system to the
average request delay of the session without the proxy system.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10 20 30 40 50 60 70 80 90 100

"ratio.totalWaitTime.plot"
1

0.625399

Figure 5: Ratio of total network wait time. X-axis represents
the 100 sessions. Y-axis represents the ratio of the total network
waiting time of the session with the proxy system to the total
network waiting time of the session without the proxy system.

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0 10 20 30 40 50 60 70 80 90 100

"ratio.totalSurfTime.plot"
1

0.836129

Figure 6: Ratio of total sur�ng time. X-axis represents the
100 sessions. Y-axis represents the ratio of the total time of the
session with the proxy system to the total time of the session
without the proxy system.

0

1

2

3

4

5

6

7

8

0 200 400 600 800 1000 1200 1400 1600 1800 2000

"agg.bandwidth.plot"
1

1.7

Figure 7: Ratio of HTTP bandwidths over 2000 URLs. X-axis
represents the 2000 URLs. Y-axis represents the ratios of the
HTTP bandwidth for all the previous URLs.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 200 400 600 800 1000 1200 1400 1600 1800 2000

"agg.delay.plot"
1

0.59

Figure 8: Ratio of average HTTP request delay over 2000
URLs. X-axis represents the 2000 URLs. Y-axis represents the
ratios of the average HTTP request delay for all the previous
URLs.



0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 200 400 600 800 1000 1200 1400 1600 1800 2000

"agg.surfTime.plot"
1

0.82

Figure 9: Ratio of Web session times. X-axis represents the
2000 URLs. Y-axis represents the ratios of the total session time
for all the previous URLs.

We obtained 2000 random URLs from the Yahoo!
Web site and divided them into 100 groups of 20
URLs to represent 100 di�erent sessions. We then
ran the csurf on the URLs with squid [4]. On a
di�erent client-server system, we ran surf with the
proxy system (before the test, we ran surf 5 times
for each of the 100 sessions over the proxy system to
allow time for the proxy system to learn the access
pattern). For both the tests, we set readspeed to be
128 chars/second and impatience to be 60 seconds.
We synchronized the sessions between the two tests
so that it cancels out the network activity that is
time-based. We also cleared all caches (local and
backbone) between sessions.

Figure 2 shows the ratio of each URL's delay time
(HTML �le together with image �le times) plotted
on a log scale. 79% of the URLs have a ratio of less
than 1. This means that 79% of the URLs took less
time with the proxy system. The 21% of the URLs
that took equal or longer time can be attributed to
the network variance in the Internet. The median
ratio was 0.239572.

Figure 3 shows the ratio of each session's HTTP
bandwidth. We see that on the average, we get twice
the bandwidth, as far as the browser is concerned.
Note that this is the mean value.

Figure 4 shows the ratio of the average URL request
time per session. We see that on the average, each
request takes only about 62% of the time it used to
take. This means a faster response to the browser.

Figure 5 shows the ratio of the total network waiting
time of each session. We notice that with the proxy

system, on the average, we only wait 62.5% of the
time we would normally wait in one session. Note
that this graph is similar to Figure 4. It is only sim-
ilar and not exact because of dynamic pages that
return di�erent dependents each time e.g. adver-
tisements.

Figure 6 shows the ratios of the total time taken
to complete each of the 100 sessions. The times in-
cluded network waiting time, sleeping time (to sim-
ulate reading), and CPU overhead time. We see
that even though 21% of the individual URL re-
quest times were equal or slower, grouping URLs
into sessions amortizes the time, and only 8%-10%
of the sessions are slower than before. We also see
that on the average (over 100 sessions), we spend
only 83% of the time we spend on a Web session
when we are using the proxy system.

Finally, we collated the times of the 2000 URLs to
see how the proxy system will perform in the long
term. It must be noted that the value we get here
is actually lower than what we would have gotten
had we used a 2000 URL session. This is because
we cleared all caches between sessions.

Figure 7 shows that, on the average, the browser
observes a bandwidth increase of 1.7 times when
the proxy system is being used.

Figure 8 shows that, on the average, for individual
HTTP request delay, the browser waits only 59% of
the time. As expected, this is roughly the inverse of
the bandwidth improvement.

Figure 9 shows that, on the average, the user spends
only 82% of the time he/she would have if he/she
only used a single backbone proxy.

5.1 Caveats

Pre-fetching is pointless if the user can read at a
rate faster than data can arrive at his/her browser.
We assume that this is not the case.

In general, we have observed that the pro�les are
learned for the �rst time over 5 to 7 sessions. Learn-
ing changes in user patterns online is dependent on
the weights assigned. In our case, we placed heavy
emphasis on a user's history. This means it takes
longer for the system to adapt to changes. At the
same time, the system is less sensitive to random
bursts of visits to certain sites that will not be vis-
ited again. That is, we set the system to do long



term adaptation. We found that this model suited
our access patterns.

The cache hit ratio, de�ned as the number of hits
over the number of user requests, for the above tests
averaged at 62%. The accuracy of pre-fetches, de-
�ned as the number of hits over the number of pre-
fetches made, averaged at 50%. However, note that
surf does not visit previous pages. In normal brows-
ing, we have found that the \previous" button is
used rather often, and this increases the hit ratio as
well as the pre-fetch accuracy. Note that the pre-
fetch accuracy can actually be greater than one if
a single pre-fetch can service multiple requests. In
our own browsing, we found that the hit ratio hovers
at around 75% and the pre-fetch accuracy hovers at
around 70%. In this case, the low pre-fetch accuracy
is due to visits of new sites in daily Web sur�ng.

Note that all these numbers are speci�c to our ac-
cess patterns and for our learned pro�les. We ex-
pect that these numbers may change for other us-
age patterns - in particular, the tuning of the con-
stants in determining user pro�les played a key role
in improving the e�ciency of pre-fetching. However,
while we believe that signi�cant work needs to be
done in order to automatically tune the system to
match user access patterns, we do believe that our
system can provide perceptible improvements in the
experience of Web browsing.

We also noted with interest that our own access pat-
terns have changed as a result of using the proxy sys-
tem. However, we felt that a user's access pattern
will naturally change when the network condition
changes. For example, if the network is slow, the
user is usually apprehensive about clicking and then
waiting. Since our proxy system basically changes
the network conditions as far as the browser is con-
cerned, we felt that a change in our access pattern
is tolerable.

6 Related Work

Studies on techniques which aim to reduce the la-
tency of Web accesses include LowLat [19] and We-
bExpress [13]. LowLat di�ers from our system in
that it requires a process to be located near the
Web server. WebExpress di�ers in that it uses �le
caching, forms di�erencing, protocol reduction, and
the elimination of redundant HTTP header trans-
mission to reduce the bandwidth used. Further-
more, WebExpress multiplexes multiple HTTP re-
quests over a single link to reduce the TCP setup

overhead. Currently, our system transmits HTTP
documents through standard HTTP/1.0.

Studies into speculative pre-fetch of Web documents
include work done by the OCEAN group [6, 9, 8],
ICS-FORTH [15], Tenet [17, 18], and Wcol [5].
OCEAN's approach di�ers in that they use both
server initiated pre-fetch as well as client-initiated
pre-fetch. Further, they use a Random Walk User
Model and a DSP User Model to model usage pat-
terns. ICS-FORTH di�ers in that they employ a
server initiated pre-fetch with the help of a Top-10
Approach. Tenet represents usage pattern on the
server through dependency graphs. Similar to our
pre-fetch with noti�cation, their server makes the
predictions and the client initiates the pre-fetches.
Wcol di�ers from our pro�le-based pre-fetch in that
they parse the HTML �les and pre-fetch both the
links and the inline images. Wachsberg [20] de-
scribes the use of a model similar to ours. A com-
mercial product that does speculative pre-fetch is
PeakJet [3].

Studies on geographical push caching [11, 12] by the
VINO research group involves server initiated push-
ing and di�ers from our client initiated approach.

Studies into collaborative data �ltering include
Tapestry [10], and FIREFLY [1]. JunkBusters [2]
is a proxy server that also �lters HTTP requests.
Our work is similar to the architecture that Zenel
describes for intelligent �ltering in low-bandwidth
environment in that we make use of an intermedi-
ary (proxy).

7 Summary

Users surf the WWW in a regular fashion; thus, it is
possible to exploit that information in caching sys-
tems. Furthermore, since users spend a non-trivial
amount of time reading a page, the time can be used
to pre-fetch documents rather than let the network
stay idle. This paper described the use of usage pro-
�ling, pre-fetching, and �ltering techniques in the
context of WWW caching.

The usage pro�les employed the use of a directed
graph to represent the path a user takes in sur�ng
the web. This information is later used by the pre-
fetch engine to issue pre-fetch requests to the cache
manager. Meanwhile, the HTTP requests and re-
sponses are �ltered to ensure good use of the avail-
able bandwidth.



Using various heuristics described in the paper, we
implemented a proxy system that improved the
network performance from the perspective of the
browser. This had the e�ect of reducing the overall
time spent on web sessions.

References

[1] FireFly. http://www.�re
y.com/.

[2] Junkbusters. http://www.junkbusters.com.

[3] PeakJet. http://www.peak-media.com/.

[4] Squid Internet Object Cache.
http://squid.nlanr.net/Squid/.

[5] WWW Collector - The Prefetching Proxy
Server for WWW. http://shika.aist-
nara.ac.jp/products/wcol/wcol.html.

[6] Azer Bestavros. Using Speculation to Re-
duce Server Load and Service Time on the
WWW. Proceedings of CIKM'95: The 4th

ACM International Conference on Information

and Knowledge Management, Nov 1995.

[7] Vaduvur Bharghavan and V. Gupta. A Frame-
work for Application Adaptation in Mobile
Computing Environments. Proceedings of the

IEEE Computer Software and Applications

Conference, Washington D.C., Aug 1997.

[8] Carlos R. Cunha, Azer Bestavros, and Mark E.
Crovella. Characteristics of WWW Client-
Based Traces. Technical Report TR-95-010,

Boston University, CS Dept, Boston, MA

02215, Apr 1995.

[9] Carlos R. Cunha and Carlos F. B. Jaccoud.
Determining WWW User's Next Access and
Its Application to Pre-Fetching. Proceedings

of ISCC'97: The Second IEEE Symposium

on Computers and Communications, Jul 1997.
(Extended version).

[10] D. Goldberg, D. Nichols, B.M. Oki, and
D. Terry. Using Collaborative Filtering to
Weave an Information Tapestry. Communica-

tions of the ACM, Volume 35, Number 12, Dec
1992.

[11] James Gwertzman and Margo Seltzer.
An Analysis of Geographical Push-
Caching. http://www.eecs.harvard.edu/
vino/web/server.cache/icdcs.ps.

[12] James Gwertzman and Margo Seltzer. The
Case for Geographical Push-Caching. Proceed-
ings of the Fifth Annual Workshop on Hot Op-

erating Systems, May 1995.

[13] Barron C. Housel and David B. Lindquist.
WebExpress: A System for Optimizing Web
Browsing in a Wireless Environment. Mo-

biCom'96 Demonstration Session, Nov 1996.
http://www.networking.ibm.com/art/artwewp
.htm.

[14] James J. Kistler and M. Satyanarayanan. Dis-
connected Operation in the CODA File Sys-
tem. ACM Transactions on Computer Systems,

Vol. 10, No. 1, Feb 1992.

[15] Evangelos P. Markatos and Catherine E.
Chronaki. A Top-10 Approach to Prefetch-
ing on the Web. Technical Report No.

173, ICS-FORTH, Heraklion, Crete, Greece.,
Aug 1996. http://www.ics.forth.gr/proj/arch-
vlsi/www.html.

[16] B.D. Noble and M. Satyanarayanan et al. Ag-
ile Application-Aware Adaptation for Mobility.
Proceedings of the ACM Symposium on Operat-

ing Systems Principles, St. Malo, France, Oct
1997.

[17] Venkata N. Padmanabhan and Je�rey C.
Mogul. Improving World Wide Web Latency.
Electronic Proceedings of the Second World

Wide Web Conference '94: Mosaic and the

Web, Jul 1994.

[18] Venkata N. Padmanabhan and Je�rey C.
Mogul. Using Predictive Prefetching to Im-
prove World Wide Web Latency. ACM SIG-

COMM Computer Communication Review, Jul
1996.

[19] Joe Touch. The LowLat Project.
http://www.isi.edu/lowlat/, 1996.

[20] Stuart Wachsberg, Thomas Kunz,
and Johnny Wong. Fast World-Wide
Web Browsing over Low-Bandwidth
Links. http://ccnga.uwaterloo.ca/~ sb-
wachsb/paper.html, 1996.

[21] Bruce Zenel and Dan Duchamp. Intelligent
Communication Filtering for Limited Band-
width Environments. Proceedings of the �fth

Workshop on Hot Topics in Operating Systems

Rosario, Washington, May 1995.


