Proceedings of USITS' 99: Th& 2ISENIX Symposium on Internet Technologies & Systems

Boulder, Colorado, USA, October 11-14, 1999

ON THE PERFORMANCE OF TCP SPLICING
FOR URL-AWARE REDIRECTION

Ariel Cohen, Sampath Rangarajan, and Hamilton Slye

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WhtiZ// www. usenix.org

Rights to individual papers remain with the author or the author's employer.
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

On the Performance of TCP Splicing for URL-aware Redirection

Ariel Cohen

Sampath Rangarajan

Hamilton Slye

Bell Laboratories, Lucent Technologies
600 Mountain Avenue
Murray Hill, NJ 07974

acohen@research.bell-labs.com

Abstract

This paper describes the design, implementation
and performance of a layer-7 switch which supports
URL-aware redirection of HTTP traffic. Currently,
there are several vendors who are beginning to an-
nounce the availability of such switches in the mar-
ket, but little or no implementation and performance
information is available. We discuss design issues
pertaining to such switches through a prototype im-
plementation of a URL-aware switch in the Linux
kernel, and analyze the performance of our imple-
mentation. We investigate the use of TCP splicing
as a mechanism for improving the performance of
the switch; we explore whether TCP splicing will
benefit URL-aware redirection even though HTTP
connections, on average, are short-lived and trans-
fer small amounts of data. Results from our im-
plementation show that TCP splicing does improve
the performance of URL-aware switches that han-
dle short-lived HTTP connections. Our results also
re-affirm earlier findings that TCP splicing substan-
tially improves the performance of any application-
layer proxy when large amounts of data are trans-
ferred through the splice.

1 Introduction

URL-aware redirection (also known as “content-
smart switching” [ArrowPoint]) refers to the capabil-
ity of a switch located in front of clients or servers to
redirect HTTP requests to servers based on the URL
specified by the client in its GET request. When
a user enters a URL into a browser, the browser
constructs an HTTP GET request which contains
the URL and other HTTP client header informa-
tion. With URL-aware redirection, a switch located
on the path between the client and the servers will
intercept the request and use the information within
that request to make a decision about the server to

which the request should be directed. All this hap-
pens transparently to the client.

A number of products currently available perform
basic layer-4 switching [Alteon, Foundry] which in-
volves redirecting traffic based on transport-layer
(TCP) information such as TCP ports as well as
network-layer (IP) information such as IP addresses.
Some uses of these products are: redirecting web
traffic to caches (to facilitate transparent caching),
server load-balancing, and fault-tolerance. URL-
aware redirection at the switch further expands the
scope of information utilized by the switch to layer-7
(application) information. The benefits derived from
this enhancement include the ability to direct re-
quests for particular kinds of content (such as images
or video) to servers which are optimized for deliver-
ing that content, the ability to direct requests for dy-
namic content to live servers instead of caches, and
the ability to reduce the need for replication in envi-
ronments where content is replicated among servers
for load-balancing and fault-tolerance—URL-aware
redirection makes it possible to use partial replica-
tion instead of full replication. Looking beyond just
the URL, it is also possible to parse the “cookie” in-
formation that is carried as part of the HT TP header
and make redirection decisions based on this infor-
mation.

Basic layer-4 switches that provide functionality
such as load balancing and support for transparent
caching perform TCP traffic redirection by redirect-
ing the initial SYN packet from the client to the
chosen destination and redirecting all subsequent
packets on the connection to the same destination.
To accomplish such redirection, the switch needs to
“peek” into the IP and TCP headers to find connec-
tion information such as IP addresses and TCP port
numbers. Based on this information, the switch uses
mechanisms such as NAT (network address transla-
tion) and PAT (port address translation) to redirect
the connection.

Redirecting TCP traffic based on application-layer

(layer-7) information is not as simple to accomplish.
For any TCP transaction, application-level informa-
tion is not available until the TCP connection es-
tablishment phase has been completed. This means
that connections cannot be redirected at a switch by
simply peering into a SYN packet as is possible with
basic layer-4 switches. The TCP connection request
from the client needs to be accepted at the switch
and the connection established between the client
and the switch before any application-level informa-
tion can be received. Once the application-level in-
formation is received, this information is parsed to
determine which back-end server or cache should re-
ceive the request, and the request is redirected.

One approach for redirection is the TCP gateway
approach where another TCP connection is estab-
lished between the switch and the back-end server,
the client request is passed to the server through
this connection, and the response is received at the
switch from the server on this connection and trans-
ferred through the other connection to the client.
Another approach would be to move the switch-side
endpoint of the client-switch TCP connection to the
server, thereby establishing a direct TCP connection
between the client and the server. This approach is
a proprietary solution used by Resonate [Resonatel]
and is referred to as the TCP Connection hop ap-
proach [Resonate2].

As far as we are aware, only Arrow-
Point [ArrowPoint] and Resonate [Resonatel]
provide URL-aware redirection solutions. Arrow-

Point provides hardware switches (CS-100, CS-800)
which are capable of performing URL-aware redirec-
tion, whereas Resonate’s product (Resonate Central
Dispatch) is purely a software solution. Vendors
such as Foundry Networks, Alteon WebSystems
and Nortel Networks together with IPivot have
recently announced their intentions to deliver
switches with URL-aware redirection in the near
future [TechWebl, TechWeb2]. ArrowPoint uses
the TCP gateway approach to support URL-aware
redirection, and we believe that other vendors that
have announced products in this space will follow
suit. Also, the TCP gateway approach is more
general than the TCP connection hop approach as
the TCP/IP stack at the back-end servers needs
to be extended in the latter approach. This is
impractical, for example, when the switches are
used on the client side to determine whether a client
request should be redirected to a nearby cache or
to a remote origin server based on the content that
is requested. Hence, we focus on the TCP gateway
approach in this paper. In the next section, we
consider URL-aware redirection in more detail and

discuss the motivation for our work.

2 URL-Aware Redirection

Let us now consider a specific example of the func-
tioning of a URL-aware switch that uses the TCP
gateway approach. In this example, an HTTP re-
quest from a client to an origin server is transpar-
ently “peeked” into by a URL-aware switch, which
then either forwards the request to the origin server
or to a nearby cache depending on the object that is
being requested. For example, if the request is for a
non-cacheable item, it will be forwarded to the ori-
gin server. Normally, when a client makes an HTTP
request, a TCP connection is first established with
the server. The client then sends information per-
taining to the object it requires as part of a GET
request'. The server parses this request and returns
the requested object to the client. When a URL-
aware switch is introduced to transparently inter-
cept client requests, the switch intercepts the con-
nection request packets from the client (based on the
destination port being port 80), and sends them up
to a local application-level proxy which understands
HTTP. A TCP connection is established between
the client and the proxy (which now masquerades
as the origin server to which the client made the re-
quest). The client then sends the GET request to
the proxy, which determines the destination (in this
case, the origin server or a nearby cache) based on
the requested object. The proxy establishes a TCP
connection to the destination, forwards the GET re-
quest on this connection, receives the response and
transfers it to the client.

The TCP gateway approach exacts an overhead
due to the use of two TCP connections. Data that
passes from the server to the client needs to go all
the way up the protocol stack to the application
layer at the switch and then again down the protocol
stack when it is put back on the connection to the
client. To improve the performance of application-
layer proxies which function as TCP gateways, TCP
splicing has been proposed as a solution [Maltzl].
In this approach, once the two TCP connections are
established, they are “spliced” together so that IP
packets are forwarded from one endpoint to the other
at the network layer without having to traverse the
TCP layer to the application level on the switch.
This requires that appropriate address translations
and sequence number modifications be performed on

IThere are other request tokens such as POST and HEAD,
but without loss of generality we will only refer to GETSs in
the rest of the paper.

the packets. For example, packets arriving on the
connection from the server to the switch that are to
be forwarded to the client, should be translated so
that the addresses and sequence numbers on these
packets match the ones that would be found on the
corresponding packets if the application-layer proxy
received this data and then put it back on the TCP
connection from the switch to the client.

In [Maltz1l, Maltz3], the use of TCP splicing has
been studied to improve SOCKS proxy performance.
Performance numbers provided in [Maltzl] show
TCP splicing to be beneficial when large amounts of
data are transferred from the servers to the clients.
Further, results in [Maltz2] show that HTTP caching
proxy throughput can be improved with TCP splic-
ing, again with big chunks of data transfer. HTTP
caching requires data to go up the application layer
to be cached anyway and may not see the full ben-
efits of TCP splicing. Also, for a URL-aware switch
that handles short-lived HTTP connections, where
the number of control packets in establishing the two
TCP connections may be as large as the number
of data packets, it is not apparent that the bene-
fits gained by splicing the data packets at the net-
work layer are not offset by the extra penalty paid in
snooping on the control packets to register connec-
tion state information. Hence, useful conclusions as
to how a URL-aware switch will benefit from TCP
splicing cannot be reached from these results. It ap-
pears that the URL-aware redirection solution from
ArrowPoint makes use of TCP splicing but there is
no documented data from ArrowPoint or other po-
tential vendors whether TCP splicing benefits URL-
aware redirection.

The design, implementation and performance of
a hardware-based URL-aware switch called L5 are
described in [Apostolopoulos]. L5 consists of pro-
grammable port controllers connected to a switch
core and a general-purpose CPU. TCP splicing is
used in this switch to take the CPU out of the data
path once the URL is obtained and a connection to
the server is established. After splicing, all packet
processing is handled by the port controllers. In our
software-based switch, all processing is done by the
CPU since port controllers are not available. The
goal of splicing in this case is to take the user-level
proxy and TCP out of the data path and perform
all packet processing after splicing within the kernel
at the IP level.

Our contributions in this paper are as follows.
First, we discuss in detail the design and implemen-
tation of a URL-aware switch in the Linux kernel
that uses TCP splicing. Then, using performance
measurements from our implementation, we show

that TCP splicing does benefit URL-aware redirec-
tion even for small TCP sessions that transfer as
few as 1 KB of data through the splice. Further,
using workloads representing different object sizes
and connection durations, we re-affirm the conclu-
sions reached in [Maltz1] that when large amounts
of data are transferred, TCP splicing provides sub-
stantial performance benefits. In the next section,
we present implementation details of the URL-aware
switch. Section 4 presents performance results from
our implementation. Conclusions are presented in
Section 5.

3 Implementation Details

There are four components to our switch imple-
mentation which is shown in Figure 1. The first
component is an application-level proxy (prozy-s)
which accepts TCP connections from the clients,
parses the GET requests, determines the destination
server and establishes a connection to that server
thereby enabling URL-aware redirection. The sec-
ond component is a loadable kernel module imple-
mented inside the Linux kernel which we will re-
fer to as the splice module (sp-mod). sp-mod moni-
tors packets exchanged on the two connections and
maintains the state machines that represent the two
connections before the connections are spliced. It
also maintains the state machine for the spliced con-
nection. When appropriate, proxy-s communicates
with sp-mod and indicates the pair of connections
that need to be spliced. The third component is an-
other loadable kernel module which we refer to as the
NEPPI (Network Element for Programmable Packet
Injection) module. This module performs low-level
header manipulation operations such as network ad-
dress translations and sequence number translations
on the packets. When sp-mod receives splicing re-
quests from prozxy-s, it interprets those requests into
low-level header manipulation instructions which it
then sends to the NEPPI module. The fourth com-
ponent is the Linux ipchains firewall, which we use to
filter packets. The sp-mod module instructs NEPPI
to filter appropriate packets to be processed. These
instructions are translated by NEPPI into appropri-
ate system calls to the ipchains firewall. Each of
these components is described in more detail below,
starting with the NEPPI and sp-mod modules.

3.1 The NEPPI Module

In our earlier work [Cohen], we developed a soft-
ware substrate implemented as a Linux kernel mod-

U RL-a/\gare proxy

Kernd ---
boundary
TCPI/IP Stack |
Packet flow
2 { before splice } ______ >
-mod
¥ - TN
: :
4 8
NEPPI g 7 6
4 —
Packetflow | | 1 7
after splice
Oupar_|

> 1
Network Interfaces

Figure 1: URL-aware switch architecture

ule (NEPPI) that provides a set of APIs which can
be used to obtain, manipulate, and inject IP pack-
ets. These APIs are typically used by gateway pro-
grams to provide higher level services. Gateway pro-
grams can either run as user-level processes or as
kernel modules themselves. Gateway programs send
NEPPI rules that specify the properties of packets
on which they wish to operate. Such rules may in-
clude IP address ranges for the source and destina-
tion, TCP/UDP port number ranges, etc. Based
on the rules obtained from the gateway programs,
NEPPI generates packet filter rules which are sent
to the Linux packet filter. An arriving packet which
triggers a rule is sent from the packet filter to NEPPI
which either sends it to the requesting gateway pro-
gram, or manipulates it in accordance with a ma-
nipulation rule specified by the requesting gateway
program. Such manipulation rules include address
translations, TCP sequence number changes, and
TCP window size changes. Packets generated or
modified by the gateway programs are returned to
NEPPI, which in turn modifies them further (if they
match a manipulation rule) and injects them into the
network. In the case where the destination address
of a packet is the switch itself, NEPPI will hand the
packet to the protocol stack instead of to the network
interfaces. One of our goals in designing NEPPI was
to provide an architecture where packet header ma-
nipulations which are generic and which occur on a
large number of packets are performed at NEPPI,

whereas more specialized packet manipulations (in-
cluding payload modifications) which occur only on
isolated packets are performed at the gateway pro-
grams. This way, the architecture will provide a
“fast path” for most packets (the ones processed by
NEPPI), and a “slow path” for only a few packets
(the ones processed by the gateway programs).

In the implementation of the URL-aware switch,
the NEPPI module serves as the low-level packet
processing substrate which is used by the sp-mod
gateway program to perform low-level packet ma-
nipulation functions. A useful feature provided by
NEPPI is support for redirecting packets to a local
TCP port. Using this feature, our URL-aware switch
can operate in transparent mode. Client requests
destined towards origin servers are transparently in-
tercepted and redirected to the URL-aware proxy,
prozy-s. In this case, the sp-mod module requests
NEPPI to redirect all incoming packets from clients
to a local TCP port on the switch in which prozy-s
is listening. NEPPI sends these packets to the lo-
cal protocol stack even though the destination IP
address on these packets is not that of the switch.
proxy-s, which listens on the local TCP port, will
receive this data and will even be able to determine
the original destination for the data. Details on how
NEPPI is used by the sp-mod module are given in
the next section.

3.2 sp-mod

The sp-mod module monitors all packets on the
client-proxy connection as well as the proxy-server
connection, and maintains the TCP state machine
for these connections. It also monitors all packets af-
ter the splicing is done, and maintains the state ma-
chine for the spliced connection. It accomplishes this
using NEPPT as follows. The Linux ipchains packet
filter provides INPUT and OUTPUT firewalls. The
INPUT firewall filters packets from outside coming
in, while the OUTPUT firewall filters packets being
sent out. sp-mod registers with NEPPI and instructs
NEPPI to forward all packets that match the follow-
ing rules: a) all packets from clients destined to port
80 (HTTP port). b) all packets from servers that
originate at port 80 and are destined to the URL-
aware proxy. Rules a and b are translated by NEPPI
into Linux system calls to the INPUT firewall. c) all
packets generated locally (by the URL-aware proxy
masquerading as the origin server) destined to the
client; these packets will originate at port 80. Fi-
nally, d) all packets generated locally by the URL-
aware proxy destined to the servers; these packets
will be destined to port 80. Rules ¢ and d will be
translated by NEPPI into Linux system calls to the
OUTPUT firewall.

Let us now discuss the steps taken at the switch
when a client request arrives. See Figure 1 in con-
junction with the following description.

When a client makes an HT'TP connection request
to an origin server, the SYN packet is transpar-
ently intercepted by the INPUT firewall and sent to
NEPPI, which in turn forwards it to sp-mod (1). sp-
mod records this new connection request information
and the state of this connection. It then instructs
NEPPI to forward this packet to the local URL-
aware proxy port (2). As mentioned earlier, NEPPI
is capable of forwarding packets to a local port even
though the packets do not carry the switch address
as the destination address. The outgoing SYN-ACK
packet is intercepted at the OUTPUT firewall and
forwarded to sp-mod (3). The connection state is
updated at sp-mod and the packet is sent through
NEPPI to the client (4). In order for these packets
not to be intercepted again at the OUTPUT fire-
wall, NEPPI bypasses the OUTPUT firewall when
it sends packets out. Note that these packets will
carry the origin server’s IP address as the source ad-
dress since the URL-aware proxy masquerades as the
origin server. When the ACK to the SYN-ACK is
received, it is again intercepted at the INPUT fire-
wall and forwarded to sp-mod (1), which updates
connection state and forwards it to the local port

(2). This completes the initial handshake.

After the initial handshake, the packet(s) contain-
ing the GET request are sent by the client to the
server. Again, these packet(s) are intercepted at the
INPUT firewall and forwarded to sp-mod (1). At
this time, sp-mod records the seq (seql) and the
ack-seq (ack_seql) on the GET packet and updates
the connection state before forwarding the packets to
the local port (2). The URL-aware proxy processes
the GET request and selects a back-end server to
redirect this request based on the contents of the
URL (5). For example, if the switch is placed in
front of clients to transparently redirect requests to
caching servers, an appropriate caching server will be
chosen. Once the server is chosen, it initiates a TCP
connection to that server. The SYN packet from the
proxy to the server is intercepted at the OUTPUT
firewall and forwarded to sp-mod (6). Again, new
connection information is recorded and the packet
is forwarded to the server through NEPPI (7). The
SYN-ACK and ACK packets similarly pass through
sp-mod and state information is updated. Note that
sp-mod maintains state information for all connec-
tions but cannot identify which pair of connections
should be spliced. Once the initial handshake be-
tween prozy-s and the server is completed, the proxy
sends the GET request to the server. But before
that, it sends a splice command to sp-mod with the
appropriate endpoint information, instructing sp-
mod to splice the connections together. The end-
point information includes two four-tuples, one each
for each connection: the client IP address and TCP
port number, the address and port number of the
proxy endpoint on the client side, the address and
port number of the proxy endpoint on the server
side, and the server address and port number. When
the GET packet(s) from the proxy to the server pass
through sp-mod, it records the seq (seq2) and the
ack-seq (ack_seq2) values on the GET packet.

sp-mod uses this pair of four-tuples it received
from prozy-s, as well as the sequence number and
ack-sequence number it recorded on the two con-
nections, for the purpose of splicing connections to-
gether. When the first ack or data packet is received
from the server in response to the GET request, sp-
mod sends instructions to NEPPI to splice the con-
nections together (8). The instructions are in the
form of address translation and sequence number
translation instructions. The destination address
and port number on the packets from the server
to the proxy are changed to those of the client,
and the seq and ack-seq numbers are re-mapped to
those that would be found in corresponding pack-
ets if these packets were received by prozry-s and

put on the TCP connection to the client. Similarly,
address and sequence number translations are per-
formed on the acknowledgment and other packets
from the client before they are sent to the server.
The source address and port number are changed so
that the packet appears to the server as if it was
sent by proxy-s. The seq and ack-seq numbers are
re-mapped to the appropriate numbers to appear
as if they were sent by prozy-s on its established
connection to the server. The sequence number
re-mapping is easily accomplished using the offsets
01 =seql — seq2 and J2 = ack_seql — ack_seq2,
which are either added or subtracted to the sequence
and ack-sequence numbers depending on the direc-
tion of packet flow.

Once the splice is done, all data packets from
the server to proxy-s, and all acknowledgment pack-
ets from the client, are redirected to the client and
server, respectively, at the network level (9). As
soon as the splice is performed, the two TCP end-
points on the switch bound to proxy-s (one on the
connection to the client and one on the connection
to the server) no longer receive packets and can be
closed. To accomplish this, RST packets are gen-
erated by sp-mod masquerading as the client or the
server (depending on which endpoint needs to be
closed) and sent to prozy-s. When the data transfer
has been completed, either the server or the client
can initiate an active close. In either case, the FIN
packets and the corresponding ACKs are still spliced
so that the endpoints at the client and the server,
each representing one endpoint of each connection,
are also closed cleanly.

3.3 The URL-aware Proxy (prozy-s)

The URL-aware proxy prozy-s is a multi-threaded
application-level program. A listener thread lis-
tens for incoming client connection requests and dis-
tributes these requests to a pool of worker threads.
Once a client connection has been accepted and the
GET request has been received, a connection is es-
tablished with a chosen server. Before the GET re-
quest is sent to the server, proxy-s sends a splice
command to sp-mod as described earlier. It uses
the getsockname function call on the two socket end-
points to get the four-tuple information to be con-
veyed to sp-mod. As the client requests are transpar-
ently redirected to prozy-s, the getsockname function
call on the client side socket endpoint will return the
server’s IP address and port number as the local end-
point. Library functions are provided which enable
prozxy-s to send the splice command to sp-mod.

The current implementation of prozy-s processes

only the URL to make redirection decisions. The
proxy can be configured to redirect requests based on
extensions. For example, URLs with the GIF, JPG
and HTML extensions can be redirected to different
servers as shown in Figure 2. Also, CGI requests can
be redirected to specified servers. A primitive form
of cookie processing is available, where requests can
be redirected to a server based on the presence or
absence of a cookie. This will be useful, for exam-
ple, when the switch is placed as a front-end to a set
of caching servers. In this case, the proxy can be in-
structed to forward all requests that contain a cookie
to the origin server instead of redirecting them to
caching servers. As described in [Apostolopoulos],
other HTTP request headers can be processed to
provide various functionalities. As our current focus
in on TCP splicing, we have not concentrated on this
aspect.

3.4 ipchains firewall

As mentioned earlier, we use the existing Linux
firewall functionality to filter packets on the INPUT
and OUTPUT firewall chains. ipchains provides the
capability to specify packet filtering rules based on
source IP and destination IP address ranges, source
TCP and destination TCP port number ranges, and
protocol numbers. These rules are specified using
system calls to the firewall. NEPPI sends commands
to the firewall to filter packets requested by sp-mod.
For each rule, a mark can be specified which is used
by ipchains to tag the packets when they are filtered
and forwarded. sp-mod uses these marks to distin-
guish the direction of flow for each packet so that
appropriate processing can be performed. This re-
moves the extra overhead which would be required
if sp-mod had to look at the packet headers to de-
termine the direction of flow.

During the connection establishment phase from
the client to prozy-s, the packets from prozy-s to
the client are intercepted at the OUTPUT firewall
and redirected to sp-mod. Packets from prozy-s to
the client are only monitored by sp-mod to main-
tain the state of the connection. It does not in-
struct NEPPI to perform any header modifications
on these packets. This means that after sp-mod
looked at these packets, and NEPPI received them
and sent them on the network, these packets would
normally pass again through the OUTPUT firewall,
filter rules would again get fired and the packets
would be forwarded back to sp-mod. This would cre-
ate an infinite loop. A similar problem exists on the
connection from prozy-s to the server. To get around
this problem, we had to change the raw socket imple-

GET /program.cgi?name

GET /index.html
URL-aware switch

Server 1
(Cgi server)

. Server 2
GET /lucentlogo.gif

O GET /lucentlogo.gif

GET /program.cgi?name

GET /index.html

(graphics server)

Server 3
(document server)

Figure 2: URL-aware redirection

mentation that NEPPI uses to send packets on the
network so that the OUTPUT firewall is bypassed.

Finally, as discussed in [Maltz1], when two TCP
connections are spliced, it is important that the
TCP options on the two connections be adjusted
and made compatible. In our current implementa-
tion, we address this problem by simply removing
all options except the Maximum Segment Size op-
tion on the SYN packets on both connections.

4 Performance

We conducted three experiments to study the per-
formance impact of TCP splicing in our Linux-based
switch for URL-aware redirection. All experiments
consisted of running an HTTP workload generator
on five clients. The first experiment involved access-
ing Web sites within the Lucent Technologies cor-
porate network; the second experiment consisted of
accessing external sites, and the third experiment
involved sites on the local network. For the pur-
pose of the first two experiments, all HTTP GET
requests were directed by the switch to the server
specified by the client (i.e., no URL-aware redirec-
tion was performed.) The third experiment made
use of the URL-aware redirection capability of the
switch. We ran each workload with two versions of
the proxy software running on the switch: one which
performed TCP splicing (proxzy-s), and one which
did not utilize TCP splicing (we refer to this version
as proxy-ns.) In both versions, the proxy obtains a
GET request from a client, opens a TCP connection
to the appropriate server, and sends the GET re-
quest to the server. At that point, prozy-s requests
sp-mod (which resides in the Linux kernel) to splice
the TCP connection between the proxy and the
client with the TCP connection between the proxy
and the server. From that point onward, proxy-s
does not have to handle any traffic on these connec-
tions. prozy-ns, on the other hand, does not splice
the connections and hence has to forward data be-

tween its client-side socket and its server-side socket
at the application level.

We used a locally-developed HTTP workload gen-
erator called WebWatch in our experiments. This
program generates multiple concurrent HTTP re-
quests and measures the obtained performance.
WebWatch reads a file containing a list of URLs and
a file containing various parameters such as the de-
sired number of concurrent requests and the number
of passes through the URL file. Once WebWatch
starts executing, it starts sending HTTP GET re-
quests based on the URLSs in its input file. The spec-
ified URLs are obtained along with all their embed-
ded documents. WebWatch issues a certain number
of concurrent requests (as specified in its parameters
file), and then waits for the arrival of the responses
or the expiration of a timer. Once all the data is re-
ceived (or the timer expires), a new batch of requests
is issued.

All the experiments presented here were run for a
period of three minutes with a concurrency setting
of 75 (i.e., 75 HTTP requests were issued at a time.)
prozy-s and prozy-ns were run with a thread pool
of size 30. All clients were PCs based on Pentium
IT 400MHz CPUs. The switch was a PC based on
a Pentium IIT 550MHz CPU. The experiments were
run multiple times to determine whether there was
a significant variation among the results of different
runs. The results of all runs were very similar to the
results of the runs reported here.

The workload for the first experiment consisted
of Web sites within the Lucent Technologies corpo-
rate network. The clients and the switch were on a
Fast Ethernet network which is connected to mul-
tiple regular Ethernet networks through a router.
Table 1 shows the results of this experiment. The
“Conn” column shows the number of HITTP GET
requests from the workload which WebWatch was
able to issue within the period of the experiment.
Note that the number of TCP connections for which
the switch serves as an endpoint is actually twice
the number which appears in the “Conn” column

Program || Conn Util
prozy-s 13,194 | 1.52%
prozy-ns || 7,917 | 5.13%

Table 1: Results for the internal workload

Program || Conn | Util
proxy-s 8,250 | 1.18%
prozy-ns || 5,594 | 2.94%

Table 2: Results for the external workload

since each GET request from a client results in es-
tablishing one TCP connection between the client
and the switch and another TCP connection between
the switch and the server. The “Util” column shows
the average CPU utilization at the switch for the
period of the experiment. We see that using prozy-
s resulted in a 67% higher number of connections
than prozy-ns, while incurring a significantly lower
CPU utilization. With prozy-ns, connections take
longer to complete, so WebWatch was able to com-
plete a smaller number of connections with prozy-
ns than with prozy-s in the given amount of time.
Recall that for each client, WebWatch was config-
ured to submit a batch of 75 requests, and then wait
for them to complete before sending the next batch.
Since there is much unused CPU time, we could po-
tentially increase the number of clients used with
prozy-ns until the number of connections achieved
matches the number obtained by prozy-s with just
five clients. This would, however, result in an even
larger difference in CPU utilization between prozy-s
and proxy-ns.

The workload for the second experiment consisted
of external Web sites (various news sites). Table 2
shows the results of this experiment. Again, we see
that using prozy-s resulted in a significantly higher
number of connections (47% higher) and lower CPU
utilization.

To observe the impact of using TCP splicing on
different file sizes, we ran a third set of experiments.
The workload for this set of experiments consisted of
retrieving files of a uniform size from three HTTP
servers on the same Fast Ethernet network as the
clients and the switch. Files had three possible ex-
tensions; the URL-aware switching capability of the
switch was configured to direct each possible exten-
sion to a different server. We ran seven experiments
for seven different file sizes. Table 3 shows the results
of this set of experiments. File sizes are in bytes.
Similar to the experiments described previously, the

workload was run for a period of three minutes. The
“Conn/s” column shows the average number of con-
nections obtained per second. The table shows the
significant increase in the improvement obtained by
prozy-s when compared to proxy-ns as the file size
increases.

prozy-s shows the biggest performance gain for
large transfers. This is a result of the following:
for small transfers, the overhead associated with set-
ting up the connection and issuing the GET request
is high compared to the overhead associated with
transferring the data itself. This overhead is simi-
lar for prozy-s and prozy-ns. When performing large
transfers, however, prozy-ns is strongly affected by
the need to move the data between the sockets at the
user-level proxy. proxy-s, on the other hand, does
not need to handle the data at the user-level proxy
at all since the two TCP connections are spliced to-
gether within the kernel.

It is important to note another advantage which
proxy-s has when compared to prozy-ns. After the
splicing of the two TCP connections (client to proxy
and proxy to server) is accomplished, the connec-
tions are reset, so they cease to exist. When no
splicing is used (i.e., in the case of prozy-ns), the
connections exist for the duration of the data trans-
fer and for an additional period beyond the time
when the connections are closed (the 2MSL time-
out required by TCP). This results in a much larger
number of TCP connections with state in the proto-
col stack when running prozy-ns.

As seen in Table 3, the CPU in the switch is fully
loaded when running prozy-ns. We were not able to
fully load the CPU when running prozy-s. For files
of size 10,000 bytes and larger, the 100 Mbit/sec
network was fully utilized. For smaller files, neither
the network bandwidth nor the CPU utilization was
a bottleneck. Hence, one might expect to obtain
larger numbers of connections for those files than
the numbers we obtained. We are not certain about
the reasons for not obtaining larger numbers. Possi-
bly, a limitation of the servers was reached, or per-
haps some limitation of the Linux TCP/IP stack was
reached. We plan to investigate this issue further in
the future.

Empirical data indicates that the average web ob-
ject size is around 10 KB [Lee]. For objects of this
size, Table 3 shows that TCP splicing results in a
53% increase in the number of connections along
with a 38% decrease in CPU utilization.

File Splice (prozy-s) No splice (prozy-ns)

size Conn Util Conn/s | Conn Util Conn/s
1,000 233,035 | 61.32% | 1,295 | 183,307 | 95.49% | 1,018
2,000 227,107 | 64.85% | 1,262 | 172,984 | 93.61% 961
5,000 214,782 | 71.20% | 1,193 | 153,202 | 97.99% 851
10,000 || 177,216 | 61.84% 116,071 | 99.82% 645
20,000 || 89,477 | 21.24% 82,866 | 99.56% 460
30,000 || 62,907 | 13.42% 60,939 | 96.80% 339
300,000 || 6,843 1.60% 5,455 | 99.45% 30

Table 3: Results for a uniform workload of different file sizes

5 Conclusions

The implementation of a URL-aware redirection
switch was presented. The switching functional-
ity is provided by loadable kernel modules for the
Linux OS along with a user-level proxy. The user-
level proxy serves the purpose of accepting connec-
tions from clients, determining the requested URLs,
making decisions about the appropriate servers, and
submitting the requests to the servers. Upon sub-
mission of a request to a server, the proxy removes
itself from the data path by requesting the kernel
to splice at the IP level the connection between the
client and the proxy with the connection between the
proxy and the server [Maltzl, Maltz2]. The perfor-
mance impact of TCP splicing was studied by com-
paring the performance of the switch with and with-
out splicing on a variety of workloads. TCP splicing
resulted in a significant performance improvement
on all workloads. As expected, the effects of TCP
splicing are particularly striking for large requests,
but our results show significant performance gains
even for workloads consisting of small requests of
one kilobyte.

Acknowledgments: We would like to thank Rein-
hard Klemm for providing us with his HTTP work-
load generator WebWatch.

References

[Alteon] ACEdirector,
http://www.alteon.com/products.

[Apostolopoulos] Apostolopoulos, G., V. Peris, P.
Pradhan, and D. Saha. L5: A Self Learning
Layer-5 Switch. IBM Research Report 21461,
1999.

[ArrowPoint] “The content smart internet”,
http://www.arrowpoint.com/solutions/
whitepapers/CSI.asp.

[Cohen] Cohen, A., and S. Rangarajan. A Pro-
gramming Interface for Supporting IP Traffic
Processing. In: Proceedings of the 1st Interna-
tional Working Conference on Active Networks
(Lecture Notes in Computer Science, Vol. 1653,
Springer), pp. 132-143, 1999.

[Foundry] “ServerIron server load balancing
switch”, http://www.foundrynet.com/
serverironsepc.html.

[Lee] Lee, R., and G. Tomlinson. Workload Require-
ments for a Very High-Capacity Proxy Cache
Design. In: Proc. of the 4th International Web
Caching Workshop (NLANR/CAIDA), 1999.

[Maltzl] Maltz, D.A., and P. Bhagwat. TCP Splic-
ing for Application Layer Proxy Performance.
IBM Research Report RC 21139, 1998.

[Maltz2] D.A. Maltz and P. Bhagwat. Improving
HTTP Caching Prozy Performance with TCP
Tap. IBM Research Report RC 21147, 1998.

[Maltz3] D.A. Maltz and P. Bhagwat. MSOCKS: An
Architecture for Transport Layer Mobility. In:
Proc. of IEEE INFOCOM 98, pp. 1037-1045,
1998.

[Resonatel] “Resonate Products—Central Dis-

patch”, hitp://www.resonate.com.

[Resonate2] “Resonate Central Dispatch TCP Con-
nection Hop”, hitp://www.resonate.com/
products/tech_overviews.html.

[TechWebl] “Switch Vendors Detail Enhance-
ments”, http://www.techweb.com/wire/story/
TWB1999031650006, 1999.

[TechWeb2] “Portals Provide Layer 4 Acid Test”,
http://www.techweb.com /wire/story/
TWB1999031550009, 1999.

