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Abstract

Maintaining optimal consistency in a distributed system re-
quires that nodes be always-on to synchronize information. Un-
fortunately, mobile devices such as laptops do not have ade-
quate battery capacity for constant processing and communica-
tion. Even by powering off unnecessary components, such as
the screen and disk, current laptops only have a lifetime of a
few hours. Although PDAs and sensors are similarly limited in
lifetime, a PDA’s power requirement is an order-of-magnitude
smaller than a laptop’s, and a sensor’s is an order-of-magnitude
smaller than a PDA’s. By combining these diverse platforms
into a single integrated laptop, we can reduce the power cost
of always-on operation. This paper presents the design, imple-
mentation, and evaluation of Turducken, a Hierarchical Power
Management architecture for mobile systems. We focus on a
particular instantiation of HPM, which provides high levels of
consistency in a laptop by integrating two additional low power
processors. We demonstrate that a Turducken system can pro-
vide battery lifetimes of up to zen times that of a standard laptop
for always-on operation and three times for a system that peri-
odically sleeps.

Categories and Subject Descriptors

D.4.7[Operating Systems]: Organization and Design—
distributed systems, interactive systems, real-time and em-
bedded systems; D.4.8[Operating Systems]: Performance—
measurements; D.4.4[Operating Systems]: Communications

Management—network communication;

General Terms

Management, Measurement, Performance

Keywords

Power management, energy management, pervasive comput-
ing, mobile computing, low-power computing, embedded de-

vices.

1 Introduction

The performance and utility of any distributed system is
impacted by the availability of the participating nodes.
In order to execute tasks remotely and maintain consis-
tency of distributed data stores, nodes must be powered
on and connected to one another. These requirements are
difficult to support in a wired environment; if the partici-
pating nodes are mobile, it becomes even more of a chal-
lenge. It is particularly difficult to ensure that a mobile
node remains always-on to participate in the system.

Mobile devices are unique in that they have finite life-
times. In larger mobile devices, such as laptops, aggres-
sive power management is often used to extend device
lifetime by reducing the amount of time the device re-
mains on. Although PDAs and sensors are similarly lim-
ited in lifetime, a PDA’s power requirement is an order-
of-magnitude smaller than a laptop’s and a sensor’s is
another order-of-magnitude smaller than a PDA’s. How-
ever, these reduced power draws come at the price of re-
duced functionality and computational power.

This paper presents the design, implementation, and
evaluation of Turducken', a mobile device architecture
that enables full device functionality, always-on avail-
ability, and extended device lifetime. Turducken inte-
grates several mobile computing platforms that operate
at different power levels into a single multi-tiered device
that can operate at the power level of any one of its tiers.
While the system supports all of the functionality of its
highest power tier, it can utilize lower power tiers to exe-
cute simpler tasks, thus reducing the system-wide power
consumption and extending the system lifetime. More-
over by integrating an always-on tier such as a sensor we
can achieve always-on availability.

Because maintaining consistency of distributed data
stores is one of the most integral tasks for mobile dis-
tributed systems, we focus our attention on Turducken’s
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ability to maintain high levels of consistency. Our eval-
uation compares several Turducken configurations run-
ning three common, data-driven applications: time syn-
chronization, web caching, and email. Our results indi-
cate that a Turducken system that integrates an x86-based
laptop with a StrongARM and a sensor provides the same
level of consistency as a standard laptop computer; how-
ever, it can remain always-on for up to ten times as long,
and three times as long if the laptop periodically sleeps
to conserve energy. Additionally, we present a theoret-
ical analysis of the lifetime gain of using a Turducken
system to execute any task. This analysis demonstrates
that Turducken is useful for a broad set of distributed ser-
vices.

In Section 2 we provide further motivation and intro-
duce the Turducken approach. Section 3 describes the
design of the hardware components as well as the soft-
ware architecture. Section 4 presents a prototype imple-
mentation, which we evaluate in Section 5. Section 6
presents related work, and we conclude in Section 7.

2 Motivation

2.1 Consistency in Mobile Systems

A fundamental goal in mobile distributed systems is pro-
viding consistency between data stores. Distributed file
systems, databases, and applications such as email and
the web demand that a user’s local view of data be con-
sistent with the view at other nodes in the system. This
consistency is ensured through frequent synchronization
between nodes. For two end-points to maintain optimal
consistency, they must both be always connected and al-
ways powered on. Unfortunately, if either node is mo-
bile, the system cannot make this guarantee and consis-
tency is sacrificed.

The lack of a network connection between two nodes
is primarily attributable to physical proximity and wire-
less network coverage. Network partitions can also be
the result of several other factors, including: firewalls;
integration of inexpensive short-range wireless connec-
tions in consumer devices; or location-based services
that intentionally make services only available in spe-
cific physical locales. While an end system can attempt
to mask these disconnections, it can do little to affect the
infrastructure that provides connectivity.

Even if a network path does exist between two end-
points, in a mobile system there is no guarantee that both
nodes will be powered on. Mobile nodes have a finite
energy supply and thus a finite lifetime. A node may be
off because it has exhausted its battery supply, because
it has intentionally powered down to conserve energy, or
because the user has turned off the device. In any case,
if the node performing synchronization or the node with

the most recent version of the file is not on then syn-
chronization cannot occur. Traditionally, mobile systems
address these problems by attempting to mitigate their
effects. For example many systems cache and buffer
updates and opportunistically perform synchronization
when nodes are powered on and connected. Similarly,
many systems support weak-consistency models. This
ensures that the system can be used locally even if nodes
are disconnected. In essence these techniques allow the
system to function even if data stores are not consistent;
however, as data stores become increasingly inconsis-
tent, they also become less useful.

2.2 Energy Management Approaches

To achieve high levels of consistency, mobile nodes must
be powered on as much as possible so they may take ad-
vantage of network connectivity when it exists and may
perform synchronization as frequently as possible. This
requires that a device be on and consuming energy, even
when no useful tasks can be accomplished. For instance,
ensuring that a user’s mail is immediately delivered to a
mobile device requires that the device to be powered on,
even when no new mail is arriving. This approach can
be very energy inefficient, thus negatively impacting the
lifetime of the system.

One approach to reducing energy consumption is to
leave the mobile device in an always-on mode, but turn
off the screen, aggressively spin down the disk [4, 3, 8],
scale the CPU voltage and frequency [30, 7, 5, 15, 5],
manage wireless interface usage [1], turn off banks of
RAM [12, 16, 9, 18], and recompile programs for low
power operation [28]. Unfortunately, we observe that a
sample laptop using many of these methods only has a
lifetime of approximately 8 hours and a standard PDA
only lasts for 14 hours. To keep a device in an always-on
state requires the user to charge it several times a day,
even if it is not actively used. These low-power modes
were designed to save power while providing interactiv-
ity, not to enable always-on functionality.

Another approach is to suspend the device, refresh-
ing only the RAM, and wake up at periodic intervals to
perform synchronization (e.g., download web updates).
For instance, to extend the lifetime of an IBM Thinkpad
to 3 days, we can wake the laptop for approximately 2
minutes of every hour. However, there is a trade-off be-
tween the frequency with which we wake the device and
the level of consistency maintained: waking up more of-
ten costs more energy, but provides higher consistency.
Additionally, there is no guarantee that a device will
be in range of a network and able to perform synchro-
nization when it wakes. An approach such as Wake-
on-Wireless [24] can reduce the amount of energy spent
waking a device if no network connectivity exists. How-
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ever, a significant amount of energy is still wasted if a
high-power device, such as a laptop, wakes to discover
that a network connection exists but no updates are ready
(e.g., no new mail has arrived or a cached web page has
not changed).

While these approaches provide considerable energy
savings, they are inappropriate for extending the max-
imum lifetime of the device while providing high con-
sistency. This is because they fail to address the non-
reducible power of mobile devices [14], which domi-
nates the lifetime of the battery. The reducible power is
the amount of power that can be eliminated from a run-
ning system while maintaining the ability to do compu-
tation. Common sources of non-reducible power include
the power supply, the on-board oscillators, the memory
and I/O buses, and the limited range of frequency and
voltage scaling [2]. Some small embedded systems have
proposed using multiple processor cores that can be shut
off [19, 11]. However, such a system only reduces the
power draw of the processor, which constitutes less than
10% of the power consumed by a laptop [2]. Even the
most highly-optimized laptop computer incurs a signif-
icant energy cost to wake up and download a piece of
data.

2.3 A New Approach: Turducken

The amount of non-reducible power varies for differ-
ent devices. For example, the non-reducible power of a
StrongARM-based PDA is on the order of twenty-times
smaller than the non-reducible power of an x86-based
laptop. As another example, the non-reducible power
of a small sensor is significantly smaller than that of a
device such as a wireless music player. Typically, de-
vices are carefully optimized to provide their promised
functionality at the lowest possible energy cost, and de-
vices that provide less functionality have smaller non-
reducible power. Fortunately, there is significant over-
lap in the functionality provided by high-power and low-
power devices. For example, maintaining a consistent
view of a file requires only the ability to connect to a net-
work and download data; a variety of devices can provide
this functionality.

The goal of our approach, Turducken, is to reduce the
energy cost of maintaining high levels of consistency on
mobile devices by combining several optimized mobile
platforms into one integrated system. By combining a
very low-power platform such as an ATmega-based sen-
sor with a very high-power platform such as a laptop, we
can produce a system that can be always-on and still have
all of the functionality of a laptop computer.

The system is composed of a set of tiers, each with a
set of capabilities and a power mode. The system as a
whole executes tasks (e.g., downloads data updates) by

waking the tier that has the capabilities to execute the
task in the most efficient manner. For example, one tier
might include a StrongARM processor, along with its
memory and storage. This tier could be integrated with
a standard x86-based laptop. We can then suspend the
x86-tier and rely upon the StrongARM-tier to wakeup
and perform periodic tasks.

For instance, if the StrongARM-tier wakes up periodi-
cally to cache a copy of frequently-used web pages, when
the user opens the laptop, those pages will be available
and highly consistent. If the laptop alone were to fre-
quently wake itself up and cache those same pages, it
would attain the same level of consistency; however, the
overall lifetime of the system would be greatly dimin-
ished.

Note that in this integrated system all of the tiers use
a common battery, are connected by a common bus,
and effectively form a tightly coupled distributed sys-
tem. However, from the user’s perspective it appears to
be a normal laptop. The addition of extra components
does increase the weight and cost of a mobile system.
For instance, adding a StrongARM mobile processor and
memory to the inside of a laptop may add $100 and a few
ounces. However, the extra capabilities the system pro-
vides outweigh these costs. Another observation is that
this system could be commercially built using commod-
ity components. The architecture is fully composable:
any set of tiers can be used together to give a wide vari-
ety of power modes and can be applied to many mobile
devices.

2.4 Lifetime Gains

We can demonstrate Turducken’s effectiveness using a
simplified analysis of the expected gains in the lifetime
of the system. Here we analyze the expected lifetimes of
two different systems. The first is a normal laptop that
wakes up periodically to synchronize and goes back to
sleep. The second is a simplified Turducken system that
consists of an x86-tier integrated with a StrongARM-tier;
the x86-tier remains suspended, while the StrongARM-
tier periodically wakes up and performs the same syn-
chronization task.

Our analysis shows that there are two circumstances in
which Turducken provides gains in the system lifetime:
1) if the fraction of time the laptop spends awake is large
enough to overcome the extra burden of the StrongARM-
tier’s suspension power, and 2) if the time in which the
StrongARM-tier can perform the synchronization task is
a reasonable multiple of the time the x86-tier takes.

The first equation details the lifetime of a laptop that
wakes at periodic intervals:
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Py (1—fh) - P

where C is the capacity of the battery, f% is the frac-
tion of time the laptop spends awake, P} is the power
it expends while awake, 1 — f% is the fraction of time
the laptop spends asleep, and PZ is the power it expends
while suspended.

The lifetime of a Turducken system, consisting of an
x86-tier paired with a StrongARM-tier, can be repre-
sented as:

L (D

C
T Pr (- f) - PL A PE

where f1 and P} are the fraction of time and power
the StrongARM tier spends awake, and 1 — f£ and P&
are the fraction of time and power the StrongARM tier
spends suspended respectively. C is the battery capacity.
The x86-tier remains suspended while the StrongARM-
tier wakes up. Thus the x86-tier expends P all of time.

Using these two equations we can express the gain of
the Turducken system as the ratio of the lifetime of the
Turducken system to that of a standard laptop:

Lt

2

Lr __ fi-Pi+(1-Jf4) P§ 3)

Ly fR-PY+(—fR) PE+PE

As long as this ratio is greater than one, Turducken has
a positive impact on the lifetime of the system. Using the
proof found in the appendix and a set of measurements
taken from a prototype system running the web caching
application, described in Section 4, we find that if the
web caching application only runs 17 seconds of every
hour, then the StrongARM-tier can perform the synchro-
nization task up to 5 times slower than the x86. In fact,
because web caching is network bound, the ratio of ex-
ecution time is actually one-to-one, and for reasonable
levels of consistency the web caching application runs
much more than 17 seconds of every hour. Because of
these two factors, Turducken typically provides an in-
crease in lifetime substantially greater than this lower
bound.

The remainder of this paper describes the design and
prototype implementation of the hardware and software
components of our system. Additionally, we present a
set of experiments which quantify the benefits of using
the Turducken system.

3 System Design

The design of a Turducken system is composed of three
parts: the hardware, the underlying system architecture,
and the model for distributing applications across the

tiers. In general, the design is similar to many distributed
systems; each tier is under autonomous control while de-
cisions are made in a distributed manner. Client applica-
tions reside at the most powerful tier, and tasks that sup-
port those applications are distributed among the various
tiers.

Superior
Tier
Local Communication WakeUp
Link Message
Task Service
Execution Discovery
—— Battery

Tier Hardware (CPU,
Memory, Storage)

Local Communication WakeUp
Link Message
Inferior

Tier

Figure 1: System Design

3.1 Hardware Design

A Turducken system is designed in a strictly hierarchi-
cal manner, and each tier is more powerful than any tier
below it. Each tier can communicate with a superior
tier and an inferior tier—the two exceptions being the
top and bottom of the hierarchy. Communication occurs
via a local communication network and the tiers are con-
nected to a common power source. Moreover, each tier
has the ability to draw its superior tier out of a suspended
mode. It is fully composable; the system will still op-
erate correctly if tiers are added, removed, or changed.
This provides a flexible architecture that can accommo-
date the evolving number of hardware platforms avail-
able in low-power computing. An overview diagram of
our design is shown in Figure 1.

Each tier contains an independent processor, memory,
internal bus, and persistent storage system. Each may
also have an independent external wireless network inter-
face, although these can be shared by routing through the
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inter-tier communication network. The set of tiers can be
architecturally homogeneous and span a range of power
requirements. By limiting the interface between tiers, we
achieve composability. Integrating new tiers with differ-
ing instruction sets, capabilities, operating systems, and
power requirements is straightforward.

A Turducken system is also fully autonomous and
does not depend on any special hardware from the ex-
ternal network. For instance, Turducken does not require
external networks to be equipped with hardware wakeup
signals, such as those used in the Wake-On-Wireless
project [24]. This ensures that the system will work
with high-powered access points, as well as low-power,
peer-to-peer, wireless devices. Because there is no de-
pendence on the external, wireless networking hardware,
Turducken will work with any radio interface, as well as
accommodate multiple radios in the same system.

3.2 System Architecture

The system as a whole is responsible for accepting tasks
from the user and executing them in a way that extends
the lifetime of the system. Tasks can be anything from
keeping the time synchronized to ensuring that the local
copy of the user’s email is current. The user, or a ser-
vice executing on behalf of the user, introduces tasks at
the highest level and the system distributes these tasks
among the different tiers in a way that extends the life-
time of the overall system. Each tier is capable of several
operations: perform tasks or discover services; inform
other tiers when necessary; and manage its local con-
sumption of power. We discuss each responsibility in
more detail below.

Perform a task. A tier can perform a task if the required
service is reachable and ready to be used. Ideally,
a task will be executed by the most efficient tier
capable of performing that task. For example, the
highest-power tier would be required to synchronize
a very large media file while a StrongARM-tier can
perform the task of synchronizing a cache of web
pages. For some applications, a tier will also need to
pass the results of task execution to its superior tier.
For example, a web page cached by a StrongARM-
tier will ultimately be delivered to the highest tier in
response to a user request.

Perform service discovery. A tier can also monitor the
availability of a service required by a higher-power
tier in order to perform a task. Service discovery
may simply discover the existence of a service, or it
may determine whether a particular service needs
to be used (e.g., whether or not a user has new
email that needs to be fetched). Again, service dis-
covery should be performed by the lowest-power

tier that is capable of discovering the service. In
many cases, it is also possible to further decompose
service discovery. For example, to determine if a
large media file is available to be synchronized, an
ATmega-tier can monitor the network for connec-
tivity, a StrongARM-tier can determine if the file
has changed, and the x86-tier can actually perform
the task.

Enter a suspension state. If a tier is not needed to per-
form a task or service discovery, it may put itself to
sleep in order to conserve energy. In some cases,
this may require that the tier delegate tasks or ser-
vice discovery jobs to its inferior tier. For example,
a StrongARM-tier may notify an ATmega-tier that
it is going to sleep and needs to be woken when a
network connection is available.

Wake its superior tier. Once a tier has discovered an
appropriate service, it may need to wake its supe-
rior tier so that it can perform the task. Each tier is
capable of waking its superior tier. In this way, a
tier can rely on its inferior tier to tell it when there
is something to do rather than requiring the system
to wake periodically and check.

3.3 Distributing Applications

There are several methods of distributing application re-
sponsibilities over the tiers. We describe each of these
options here:

System-Aware Architecture. The first option is to
build an application that is customized for the sys-
tem. Such an application requires designers to cre-
ate application components for each tier. In addi-
tion, the application must define the messaging pro-
tocol used to communicate between components.
This hand-coded option is useful for new applica-
tions and also for applications, such as time syn-
chronization, which are fairly simple to implement.

Proxy-Based Architecture. A second option is to use a
proxy-based architecture that can take advantage of
existing distributed application components. Using
this architecture, a tier that executes tasks appears as
a proxy service provider or a replicated server to su-
perior tiers. Many distributed applications, such as
distributed file systems, email, and web caching, al-
ready support this design. Therefore, the advantage
is simplicity and deployability—proxies only re-
quire recompiling and reconfiguring the application
rather than recoding. Unfortunately, not all appli-
cations will tolerate a proxy that queues responses,
requiring some modification of applications. One
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possibility is to use queued RPC as found in the
Rover toolkit [10].

Transparent Architecture. A final option is to develop
a Turducken system component that is capable of
transparently migrating application processes. One
way to support this is by using traditional process
migration [13, 21, 26, 27]. We have eliminated
this as a possibility due to the complications aris-
ing from different architectures, operating systems,
and memory capacities. Another possibility is to
use virtual machines, either programming-language
virtual machines such as those used for Java, or a
lightweight, OS-level virtual machine such as De-
nali [31]. Unfortunately, the current lack of a virtual
machine that runs on all of these platforms, and the
vastly differing capabilities of the tiers makes this
difficult.

4 Prototype Implementation

To demonstrate the efficacy of our approach, and to pro-
vide a test platform for our work, we have built a proto-
type Turducken system. The prototype currently consists
of a hardware implementation and three applications:
time synchronization, web caching, and IMAP synchro-
nization.

4.1 Hardware Implementation

The hardware prototype, shown in Figure 2, consists of
three tiers: an x86-based IBM Thinkpad X31, a Com-
paq iPAQ 3870 StrongARM-based PDA, and a Cross-
Bow Mica2Dot ATMega-based Mote. The Mote and
iPAQ are directly connected via a serial interface and the
iPAQ and the laptop are directly connected via a USB
interface. The Mote can wake the iPAQ through the use
of the serial DCD line, and the iPAQ can wake the lap-
top by sending a request to the Mote, which wakes the
laptop by triggering a relay connected to the keyboard.
Our prototype can currently be reconfigured as: x86,
x86+ATMega, or x86+StrongARM+ATMega. Each tier
also contains a real-time clock (RTC) that can generate
a wake interrupt. If we reconfigure the system as x86
only, it can suspend itself and use its RTC to wake it at
set intervals.

This prototype differs from our design in three signif-
icant ways. First, the hardware components are all phys-
ically separate—a deployed system would integrate all
of the components into a laptop form-factor. The con-
nections shown in the picture would all be internal to
the system. Second, there is a plethora of extra parts
in our prototype. An integrated implementation would
eliminate much of the PDA, including its screen, sleeve,

Execution Incoming or

Tier Outgoing
Time Sync | >ATmega Incoming
Web Cache | >StrongARM | Incoming
IMAP Sync | >StrongARM | Both

Table 1: This table shows a summary of the application
characteristics. The execution tier denotes where the ap-
plication is carried out, and Incoming or Outgoing de-
scribes the direction of updates.

and buttons. Third, each tier is run from its own bat-
tery. The Turducken design assumes that there is only a
single, shared battery. This has implications for how we
evaluate the system.

In our implementation, there are two types of wireless
interfaces: WiFi and the Mote’s custom radio interface.
There are both advantages and disadvantages to having
access to multiple wireless standards. It does allow the
system to take advantage of a broader range of services
by allowing it to communicate with more devices; how-
ever, it makes system design more challenging since cer-
tain tasks may require a particular network interface and
thus it cannot be accomplished by all tiers. To mitigate
this disadvantage, we have attached a WiFi detector to
the Mote. The detector can determine if WiFi signals
are present, though it cannot communicate using WiFi or
discover if an access point is open or closed.

Even though the x86 and StrongARM tiers each have
WiFi interfaces, there is no reason to use them both in
the Turducken system. In a configuration that includes
both, we turn off the x86-tier’s interface and route all
traffic through the StrongARM-tier. This saves power,
thus extending the battery lifetime of the system.

4.2 Applications

We have developed and deployed three applications that
are representative of commonly-used mobile distributed
services: time synchronization, web caching, and IMAP
synchronization. Time synchronization is necessary for
timestamping distributed updates and determining time-
outs in soft-state protocols. Web caching on mobile de-
vices allows the mobile node to serve pages during peri-
ods of disconnection and improves response time when
connected. IMAP synchronization maintains a local mail
cache that can serve mail during periods of disconnection
and improves response time. In addition, a local IMAP
store can buffer outgoing mail and send it when the node
is connected.

These applications also represent three broader classes
of applications. These classes are defined by the traits
listed in Table 1. Time synchronization represents appli-
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Interface Interface

Figure 2: These figures show the prototype implementation of the Turducken System. The diagram on the left shows
the logical connections between components and the photo on the right shows the current prototype.

cations that require limited processing and limited trans-
mission of incoming data updates. Web caching repre-
sents applications that require more significant process-
ing and larger amounts of incoming data. This is similar
to a variety of publish-subscribe systems. IMAP syn-
chronization represents applications that require fairly
significant processing and support for outgoing as well
as incoming updates. This is similar to the requirements
of distributed file and database systems, though the con-
sistency requirements are not as strict.

4.2.1 Time Synchronization

The time synchronization application follows the
system-aware programming model. The ATmega-tier
runs a custom built Network Time Protocol (NTP) client
that synchronizes its local clock with a known time
server every t seconds. The StrongARM and x86 tiers
can then request the current time from the ATmega-tier
and update their local clocks. We define an explict API
for this communication. When the ATmega-tier is not
present, the the x86-tier uses its RTC to wake every ¢
seconds and synchronize with the remote time server us-
ing the UNIX utility ntpdate.

4.2.2 Web Cache

The web cache application follows a proxy-based pro-
gramming model. The ATmega-tier detects the pres-
ence of a WiFi signal; the StrongARM-tier runs a Squid
proxy cache; and the x86-tier runs a web browser.
Every ¢ seconds, the ATMega determines whether a
WiFi connection is available and, if so, wakes the
StrongARM-tier. The StrongARM-tier remains awake
for 30 seconds while the proxy continuously fetches ex-
pired cache items. Web requests originating from the
web browser running on the x86-tier are routed through
the StrongARM-tier. These requests can be transparently

serviced by the proxy when no network connection is
available.

When the StrongARM-tier is not present, the Squid
proxy runs on the x86-tier and the cache is stored on
the system’s hard disk. The ATmega-tier or RTC wakes
the x86-tier every t seconds. If a connection is present,
it remains awake for 30 seconds while the Squid proxy
fetches expired cache items. Again, the Squid proxy can
transparently fulfill requests from a web browser.

4.2.3 IMAP Synchronization

The IMAP synchronization application also follows a
proxy-based programming model. The ATmega-tier de-
tects the presence of a WiFi signal and the StrongARM-
tier runs a UNIX utility named mailsync, which per-
forms synchronization between an IMAP server and a
secondary mail store. The x86-tier maintains the pri-
mary mail store and uses mailsync to synchronize
with the StrongARM-tier’s secondary mail store. The
x86-tier also runs the user’s mail client. Every ¢ sec-
onds, the ATmega-tier determines whether a WiFi con-
nection is available and, if so, wakes the StrongARM.
The StrongARM-tier uses mailsync to retrieve incom-
ing mail from and send outgoing updates to the user’s
mail server. Incoming mail is stored in the secondary
mail store hosted on the StrongARM-tier.

When the user turns on the x86, it synchronizes its pri-
mary store with the secondary store on the StrongARM-
tier. The user accesses mail by configuring the mail client
to point to the primary mail store on the x86-tier. When
the user suspends the x86-tier, any changes the user
has made will be synchronized with the StrongARM-tier
which will synchronize with the remote mail server when
connected.

In some cases, the user may receive pieces of mail
that are too large to be stored in the StrongARM-tier’s
flash memory. To accomodate this scenario, the primary
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mail store also synchronizes with the remote mail server
when possible. In addition, we would like to modify the
StrongARM-tier to wake the x86-tier when it detects this
situation, though we have not yet implemented this fea-
ture.

If the StrongARM-tier is not present, the x86-tier syn-
chronizes directly with the remote mail server when con-
nected. Similar to the web cache, the ATmega-tier or
RTC wakes the x86 every t seconds. If the x86-tier dis-
covers that no connection is present, it goes back into a
suspended mode without performing synchronization.

Both the IMAP synchronization and the web caching
applications were implemented using standard compo-
nents. Due to the distributed nature of these applications,
recoding is not necessary in order to deploy them on our
prototype Turducken system. Each component can sim-
ply be recompiled for both the x86 and StrongARM ar-
chitectures.

5 [Evaluation

The primary goal of Turducken is to extend the lifetime
of a mobile computing device while allowing it to remain
aware of its environment when not actively in use. In
our evaluation of the Turducken system, we measure the
lifetime of several Turducken configurations running the
following three sample applications: time synchroniza-
tion, web caching, and IMAP synchronization. For each
application, we compare the system lifetimes of different
configurations with respect to data consistency. Finally,
we focus on the web caching application and compare
system performance with respect to variable network and
service availability.

5.1 Methodology

Our evaluation measures the lifetime of several system
configurations running varied workloads. Measuring the
lifetime of a Turducken system presents a number of in-
teresting challenges. Explicitly measuring the lifetime of
a single configuration running a single workload can take
longer than a week. Collecting even a small number of
data points using this method is impractical with only a
single prototype system. We address this problem using
time dilation. For each experiment we measure the en-
ergy consumed by the system under a small number of
workloads. Using these measured values, we use extrap-
olation to project system lifetimes over a wide range of
data points.

We calculate the lifetime of the system from the aver-
age energy that is required to run a particular application
under a given workload for a set period of time. From

the assumption that the power draw of a full system will
be no greater than the sum of the power draw of each tier.
This estimate is conservative since an integrated system
can use more power-efficient communication links be-
tween tiers.

For the experiments presented here, we measure the
amount of energy consumed by each tier using the tier’s
native power management interface. Batteries used in
modern mobile devices typically contain a gas gauge
chip, such as the Texas Instruments BQ2011 chip used
in the x86-tier’s battery, which considers temperature,
battery chemistry, and past usage to accurately compute
the amount of energy remaining in the battery. This ap-
proach is sufficient to measure the average energy con-
sumtion over a particular period of time. This is similar
to the method used to measure power consumption of the
Odyssey System [6].

Using this method we measure the energy consumed
by each tier over a fixed period of time, and calculate the
amount of time it takes the entire system to drain a full
battery. This calculation depends on several factors: the
average power draw of each tier while active; the average
power draw of each tier while suspended; the amount of
time each tier spends active; and the amount of time each
tier is suspended.

We measure the power draw of both the x86-tier and
the StrongARM-tier in suspended mode over a 10 hour
period of time. The energy in the battery is sampled im-
mediately before and after the period of suspension in
order to determine the total energy consumed. We di-
vide this value by the total experiment time to obtain the
power draw of each device in suspended mode. For the
StrongARM-tier, we obtain the full battery capacity from
the manufacturer’s specification. For the x86-tier we use
the estimated capacity specified by the device’s battery.

To determine the power draw of the x86-tier and
StrongARM-tier in active mode we run each application
on each system configuration for a 24-hour period. Dur-
ing all experiments, we turn off both the screen and back-
light of the two higher tiers in order to make a more fair
comparison. For each device, we measure the amount of
time it is active, t 4, the amount of time it is suspended,
ts, and the total energy, F, consumed by the tier. Using
the total amount of time suspended and the suspended
power draw, Pg, we calculate the energy consumed while
suspended, E'g over the 24 hour period:

Eg = Psts. )

We then use the total energy, E, and the energy used
while suspended, F'g, to compute the energy used while
active:

this value we can estimate how long it. will take the sys- Es=F — Eg. 5)
tem to drain a battery of known capacity. We also make
268 MobiSys ’05: The Third International Conference on Mobile Systems, Applications, and Services USENIX Association



Mode x86 ATmega
Active (mW) 11,600 26.4
Suspended (mW) 180 0.056

Table 2: The active and suspended power consumption of
each tier running the time application. The active power
consumption for the StrongARM-tier was not measured
since it never synchronizes with the time server.

Mode x86 StrongArm | ATmega
Active (mW) 10,955 740 26.4
Suspended (mW) 180 40 0.056

Table 3: The active and suspended power consumption
of each tier running the web caching application.

By dividing the energy used while active by the
amount of time the system is active, we obtain the power
draw, P4, of each tier in the active state:

Pa= 1, ©)
ta

The resulting power draws are shown in Tables 2, 3,
and 4.

For the ATmega-tier, we assume it will be always on
and establish a generous upper bound on the power draw
from the Crossbow datasheets. Even using this upper
bound, the power draw of the ATmega-tier has very little
impact on the lifetime of the system.

Using these individual measurements, we calculate the
power draw of the full system as the sum of the power
draw of each tier in the appropriate state. Using this
value, we calculate the amount of time it takes the en-
tire system to drain the entire battery of the x86-tier.

5.2 Consistency

The goal of our first set of experiments is to vary the level
of consistency required and observe the consequent life-
times of several system configurations. To accomplish
this, we vary the interval at which the system wakes to
perform synchronization from 0 (always on) to 0.5 hours.
A wake interval of i minutes ensures that data is incon-
sistent for no longer than i minutes.

For each of these experiments, a wireless network is
always present, the remote service is available, and new
data updates are ready. For the time synchronization ap-
plication, we assume that the time is synchronized when-
ever the system wakes. For the web caching applica-
tion, the system maintains a 5 MB cache consisting of
15 web sites. For the IMAP synchronization application,
the Turducken system fetches data updates and sends any

Mode x86 StrongArm | ATmega
Active (mW) 11,720 810 26.4
Suspended (mW) 180 40 0.056

Table 4: The active and suspended power consumption of
each tier running the IMAP synchronization application.
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Figure 3: The lifetime of three system configurations
running the time synchronization application. As the sys-
tem wakes more frequently, Turducken provides a more
significant gain in lifetime.

queued, local updates upon waking. For this experiment,
the x86-tier wakes for 2 minutes of every hour to simu-
late a user creating modifications to the local mail store.
This store initially contains 4MB of mail in four sepa-
rate folders. The queued updates to the local store are
sent to the remote IMAP server when the StrongARM-
tier wakes to synchronize. In addition, new mail is sent
to the inbox at a rate of 120KB per hour. During syn-
chronization, the Turducken client fetches this mail.

The results of the time synchronization experiment are
shown in Figure 3. When the system synchronizes fre-
quently, the lifetime of the x86-only system degrades
drastically while both the x86+StrongARM+ATmega
and x86+ATmega configurations maintain nearly con-
stant lifetimes. This is a consequence of the fact
that when using a Turducken system, the x86 and
StrongARM tiers never need to come out of a sus-
pended state. In this case, the x86+ATmega con-
figuration has a lifetime of about 225 hours and the
x86+StrongARM+ATmega has a lifetime of approxi-
mately 180 hours. The difference between these two
configurations is a result of the energy draw of the
StrongARM-tier in suspended mode.

Figure 4 shows the results of the web caching exper-
iment. We observe that the x86+StrongARM-+ATmega
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Figure 4: The lifetime of three system configurations
running the web caching application. For this applica-
tion, the full three-tiered Turducken system offers up to
a 4 times longer lifetime and consistently performs better
than the x86-only configuration.

consistently performs better than the other configura-
tions, providing a ten times improvement for always on
operation and a three times improvement when the sys-
tem wakes up every six minutes. Additionally, we ob-
serve that as the wake interval grows, the lifetime gain
lessens. This is a result of the energy required to power
the StrongARM-tier in suspended mode. Similarly, the
x86+ATmega system performs worse than the x86-only
configuration for larger wake intervals because of the
additional energy required to power the ATmega tier.
Again, we can conclude from these observations that the
higher the level of consistency required, the better the
performance of Turducken.

Figure 5 shows the results of the IMAP synchroniza-
tion experiment. The relative performance for IMAP
synchronization is very similar to the web caching ap-
plication, however, we observe that the absolute system
lifetimes are significantly smaller. This is a result of
the workload of IMAP synchronization. This particular
experiment requires that the x86-tier wake periodically
to simulate a user updating the local mail store, which
costs additional energy. This application also introduces
additional outgoing network traffic which impacts en-
ergy usage. However, we still observe that Turducken
enjoys at least a 150% improvement in system lifetime
for wakeup intervals less than six minutes. If the x86-
tier does not perform periodic synchronization and only
wakes up once an hour to send and receive updates its
average lifetime is found to be 75 hours. However, the
cost of this gain in system lifetime is that the expected
time to get an update is % hours, where p is the probabil-
ity of a network connection being available. Since this

— - x86+StrongARM+ATmega - - - x86+ATmega — x86

Lifetime (hours)
w B

20
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0 0.1 0.2 0.3 0.4 0.5
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Figure 5: The lifetime of three system configurations
running the IMAP synchronization application. For this
application, the full Turducken system offers a 1.5 times
longer lifetime and consistently performs better than the
x86 only configuration.

latency can be large for small values of p, it is reasonable
to sacrifice 13% of the system’s lifetime in exchange for
one-tenth the expected latency.

Figure 6 shows the average power draw for each tier.
Each bar represents the total average power consumed
by a particular configuration running a particular applica-
tion. A bar is composed of several components that show
each tier’s contribution to the average power draw of the
entire system. We further decompose each tier’s contri-
bution into its active and suspended modes. For example,
for the x86-only configuration running the time applica-
tion, the graph shows that the x86-tier spends most of its
time suspended and a small amount of time in its active
mode. Similarly, when it is augmented with an ATmega-
tier, it spends all of its time suspended and the ATmega-
tier expends a negligible amount of power. In the web
caching experiment, the x86+StrongARM+ATmega con-
figuration is able to replace the active power of the
x86-tier with the StrongARM-tier. The mail experi-
ment sees a similar gain; however, because the x86-tier
spends more time in active mode, the resulting active
power draw is larger. We observe that Turducken sys-
tems achieve lower average power consumption by re-
placing active power consumption in less efficient tiers
with more efficient ones.

5.3 Network and Service Availability

The goal of our second set of experiments is to vary the
availability of a wireless network and the availability of
the required service, and observe the consequent life-
times of several system configurations. For this set of
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Figure 6: This figure shows how each tier, in different states, contributes to the average power draw of the system as a
whole. We observe that Turducken systems achieve battery lifetime gains by replacing active power consumption in

less efficient tiers with more efficient ones.

experiments, we look exclusively at the web caching ap-
plication and fix the wake interval at 12 minutes. In the
first experiment, we vary the probability that a wireless
network is available from O (network never available) to
1 (network always available). In the second experiment,
we fix the probability of wireless network availability at
1 and vary the probability that a set of web servers is
reachable from O (web servers never reachable) to 1 (web
servers always reachable). For this experiment, we as-
sume that either all web servers are reachable or no web
servers are reachable and we assume that it takes a trivial
amount of time to determine reachability for all servers.

The results of varying the network availability are
shown in Figure 7. When the probability of WiFi is
low, the x86+ATmega system performs best. This is
because it can avoid waking the x86-tier if no signal
is present. The x86+StrongARM+ATmega system en-
joys the same benefit, but incurs the cost of power-
ing the StrongARM-tier in suspended mode. Interest-
ingly, the x86-only configuration performs similar to the
x86+StrongARM+ATmega for low probabilities. This
implies that the cost to periodically wake the x86 to dis-
cover that no network is present is roughly equivalent to
the cost of powering the StrongARM and ATmega tiers
in suspended mode. As the probability of a network con-

nection increases, the x86+StrongARM+ATmega system
remains nearly constant, outperforming the other config-
urations by up to a factor of 2. This is a result of the
energy saved fetching web pages using the StrongARM-
tier without waking the x86-tier. We can conclude that
Turducken provides a greater benefit as network cover-
age increases, and performs no worse than an x86 alone
as coverage decreases.

The results of varying the availability of web servers
is shown in Figure 8. The results for this experiment are
similar to the previous experiment with the exception of
the x86+ATmega configuration. While the ATmega-tier
can determine the presence of WiFi, it cannot determine
the reachability of a web server. Therefore, the ATmega-
tier must always wake the x86-tier to determine if the
web servers are reachable. This costs the x86+ATmega
configuration up to 40 hours of lifetime. However, as the
probability of service increases, the benefit of Turducken
increases.

5.4 Observations

Our primary observation is simple: for many common
distributed applications, a Turducken system can main-
tain a high level of consistency at a fraction of the power
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Figure 7: This figure shows the battery lifetime of differ-
ent configurations with respect to varying the probability
of availability of WiFi. As network coverage increases,
Turducken provides a greater benefit.

cost of a conventional laptop. This allows system behav-
ior which has traditionally been ruled out in favor of con-
serving battery power. Naturally, there is a cost incurred
when powering additional devices. This cost becomes
noticeable when the system wakes up less frequently,
reducing the benefit and retaining the cost of the addi-
tional hardware. Fortunately, even if the system never
wakes up, the x86+StrongARM+ATmega configuration
will last 82% as long as the x86-only system.

Our experiments have also shown that the main lim-
iting factor of the system’s battery lifetime is the sus-
pended power draw of the x86-tier. Our proposed solu-
tion to this is to use hibernation, which involves saving
the machine’s state to disk and powering it down. When
the system is restored, it boots to the previously saved
state. Clearly, it will cost more in both energy and la-
tency to wake a device out of hibernation; however, dur-
ing times of little or no activity (e.g. at night), using
hibernation could result in significant power savings, po-
tentially extending the system’s lifetime to over a month
on a single charge.

Additionally, it is clear that the benefit achieved is
highly application dependent. For example, in the case
of very simple applications, like time synchronization,
the x86+ATmega configuration achieves the best perfor-
mance. The best set of tiers for a particular Turducken
system depends on the target applications that the sys-
tem will host.
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Figure 8: This figure shows the battery lifetime of dif-
ferent configurations with respect to varying probability
that a set of web servers is reachable. The benefit of Tur-
ducken is evident as the probability that the servers are
available increases.

6 Related Work

A number of related research projects have explored
strategies for reducing energy consumption of mobile de-
vices. The Wake-on-Wireless project (WoW) [24] pro-
poses augmenting a PDA with a wireless sensor. An in-
network server notifies the sensor when it should wake
the PDA such that it can serve incoming requests. The
goal of WoW is similar to the goal of Turducken; low-
power operating modes in mobile devices. However, this
paper has shown the value in augmenting laptops with
multiple tiers that can execute synchronization jobs: tiers
may perform many operations without waking up the
next tier. Also, Turducken is a completely standalone
system, not requiring any support from the wireless net-
work. Some work has also looked at integrating multi-
ple radios into a mobile platform [22, 20], and we use
this idea in Hierarchical Power Management; however,
we are focused on integrating entire independent subsys-
tems rather than individual hardware components. Mayo
and Ranganathan proposed energy scale-down as a tech-
nique for saving power in mobile devices [17]. They
make a similar observation that different mobile devices
are optimized for different power points. They specif-
ically suggest using wireless LAN energy management
and multiple processor cores, as well as possibly using
multiple displays in a mobile device.

Several projects have looked at managing energy from
a whole-system standpoint. The Odyssey System [6]
trades off resources, such as energy, for application fi-
delity. The ECOsystem [32] manages energy as any
other operating system resource, enforcing fairness be-
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tween applications, as well as setting global energy con-
straints. Simunic, et al. [25] propose a general method
to manage energy consumption in across several system
components. These systems are primarily designed for
making short-term decisions and do not directly address
non-reducible power in mobile devices.

An alternative to reducing the energy consumed while
utilizing remote services is to ensure that the services are
available locally, on the user’s personal devices. A num-
ber of research projects have focused on ensuring avail-
ability of a user’s personal data. The Personal Server [29]
is a compact storage device which can provide reli-
able access to a user’s personal data. Because the de-
vice does not have any kind of display, it operates at a
low power point. However, unlike Turducken, the Per-
sonal Server provides a specific set of services and does
not provide the same level of composability or flexibil-
ity in managing energy usage. Another approach is to
ensure personal data availability by monitoring devices
in a Personal Area Network (PAN), and migrating data
from a device when its energy supply becomes critically
low [23]. Again, this does not ensure that a device can
use services provided outside of the PAN. Additionally,
the focus of Turducken is to increase availability for a
single, integrated system. However, we expect that the
techniques developed for Turducken could also be use-
ful managing energy and availability in a disconnected
mobile distributed system.

7 Conclusions

In this paper, we have presented the design and proto-
type implementation of Turducken, an approach that in-
tegrates, into a single system, a series of components
that operate at various power levels. Turducken provides
both a hardware and software infrastructure that can in-
telligently use available energy while maximizing device
utility. We have demonstrated a prototype implemen-
tation and evaluated of its performance. We found that
by using additional low-power tiers for synchronization
tasks, we can enable greater levels of consistency in dis-
tributed services. These techniques give the Turducken
system a lifetime that exceeds that of a standard laptop by
as much as ten times for always-on operation and three
times for less stringent consistency requirements. Until
there is a significant improvement in battery technology,
strategies like Turducken are imperative for intelligently
managing energy.
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Appendix
The ratio of lifetimes is given by:

Lr __ fx-Px+0—-fi) Pg @
Ly fE-PY+Q—fEy PL+PE
Using the set of measurements found in Table 3, we find that pPL =
14.8- PP, PE = 0.24. PL, and PP = 0.05- PY . Substituting these
into equation 7, we find that

Ly  0.26+14.8- rk ®
Ly 095 fF 4031
As long as this ratio is greater than 1, Turducken provides a gain

P
in system lifetime. If we define a factor x = ;—ﬁ, then the condition

A
becomes:
L L
14.8 - f4 >0.95-x- f4 +0.05 ©)
or
0.05
x < 15.57 — —. 10
4
So, for example if « = 5 and the laptop is on for a fraction of

time greater than ff“ = 0.05/10.57, or 17 seconds of every hour,
Turducken provides a benefit. In other words if the web cache only
runs 17 seconds of every hour the StrongARM can be up to 5 times
slower at refreshing the cache.

Notes

'A Turducken is a Cajun dish made by stuffing a chicken into a
duck, which is then stuffed into a turkey.
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