
Knit: Component Composition for Systems Software

Alastair Reid Matthew Flatt Leigh Stoller Jay Lepreau Eric Eide

University of Utah, School of Computing
{reid,mflatt,stoller,lepreau,eeide}@cs.utah.edu http://www.cs.utah.edu/flux/

Abstract
Knit is a new component definition and linking language
for systems code. Knit helps make C code more under-
standable and reusable by third parties, helps eliminate
much of the performance overhead of componentiza-
tion, detects subtle errors in component composition that
cannot be caught with normal component type systems,
and provides a foundation for developing future analyses
over C-based components, such as cross-component op-
timization. The language is especially designed for use
with component kits, where standard linking tools pro-
vide inadequate support for component configuration. In
particular, we developed Knit for use with the OSKit,
a large collection of components for building low-level
systems. However, Knit is not OSKit-specific, and we
have implemented parts of the Click modular router in
terms of Knit components to illustrate the expressive-
ness and flexibility of our language. This paper provides
an overview of the Knit language and its applications.

1 Components for Systems Software
Software components can reduce development time by
providing programmers with prepackaged chunks of
reusable code. The key to making software components
work is to define components that are general enough
to be useful in many contexts, but simple enough that
programmers can understand and use the components’
interfaces.

Historically, developers have seen great success with
components only in the limited form of libraries. The
implementor of a library provides services to unknown
clients, but builds on top of an existing,known layer
of services. For example, the X11 library builds on
the C library. A component implementor, in contrast,
provides services to an unknown client while simulta-

This research was largely supported by the Defense Advanced Re-
search Projects Agency and the Air Force Research Laboratory, un-
der agreement numbers F30602–99–1–0503 and F33615–00–C–1696.
The U.S. Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright annotation
hereon.

US Mail contact address: School of Computing, 50 S. Central
Campus Drive, Room 3190, University of Utah, SLC, UT 84112–
9205.

neously importing services from anunknownsupplier.
Such components are more flexible than libraries, be-
cause they are more highly parameterized, but they are
also more difficult to implement and link together. De-
spite the difficulty of implementing general components,
an ever-growing pressure to reuse code drives the de-
velopment of general component collections such as the
OSKit [10].

Existing compilers and linkers for systems software
provide poor support for components because these tools
are designed for library-based software. For example, to
reference external interfaces, a client source file must re-
fer to a specific implementation’s header files, instead of
declaring only the services it needs. Compiled objects
refer to imports within a global space of names, implic-
itly requiring all clients that need a definition for some
name to receive the same implementation of that name.
Also, to mitigate the performance penalty of abstraction,
library header files often include specific function im-
plementations to be inlined into client code. All of these
factors tend to tie client code to specific library imple-
mentations, rather than allowing the client to remain ab-
stract with respect to the services it requires.

A programmer can fight the system, and—by careful
use of#include redirection, preprocessor magic, and
name mangling in object files—manage to keep code ab-
stracted from its suppliers. Standard programming tools
offer the programmer little help, however, and the bur-
den of ensuring that components are properly linked is
again left to the programmer. This is unfortunate, con-
sidering that component interfaces are inherently more
complex than library interfaces. Indeed, attempting to
use such techniques while developing the OSKit has
been a persistent source of problems, both for ourselves
as developers and for OSKit users.

We have developed a new module language and
toolset for managing systems components calledKnit.
Knit is based onunits [8, 9], a model of components in
the spirit of the Mesa [23] and Modula-3 [14] module
languages. In addition to bringing state-of-the-art mod-
ule technology to C programs, Knit provides features of
particular use in the design and implementation of com-
plex, low-level systems:

mailto:reid@cs.utah.edu
mailto:mflatt@cs.utah.edu
mailto:stoller@cs.utah.edu
mailto:lepreau@cs.utah.edu
mailto:eeide@cs.utah.edu
http://www.cs.utah.edu/flux/

• Knit provides automatic scheduling of component
initialization and finalization, even in the presence
of mutual dependencies among components. This
scheduling is possible because each component de-
scribes, in addition to its import requirements, spe-
cific initialization requirements.

• Knit’s constraint-checking system allows program-
mers to define domain-specific architectural invari-
ants and to check that systems built with Knit sat-
isfy those invariants. For example, we have used
Knit to check that code executing without a process
context will never call code that requires a process
context.

• Knit can inline functions across component bound-
aries, thus reducing one of the basic performance
overheads of componentization and encouraging
smaller and more reusable components.

We have specifically designed Knit so that linking spec-
ifications are static, and so that Knit tools can operate on
components in source form as well as compiled form.
Although dynamic linking and separate compilation fit
naturally within our core component model, our imme-
diate interests lie elsewhere. We are concerned with
low-level systems software that is inherently static and
amenable to global analysis after it is configured, but
where flexibility and assurance are crucial during the
configuration stage.

Knit’s primary target application is the OSKit, a col-
lection of components for building custom operating
systems and extending existing systems. Knit is not
OSKit-specific, however. As an additional example
for Knit, we implemented part of MIT’s Click modu-
lar router [25] in terms of Knit components, showing
how Knit can help express both Click’s component im-
plementations and its linking language.

In the following sections we explain the problems
with existing linking tools (Section 2) and present our
improved language (Section 3), including its constraint
system for detecting component mismatches (Section 4).
We describe our initial experience with Knit in the OS-
Kit and a subset of Click (Section 5). We then describe
our preliminary work on reducing the performance over-
head of componentization (Section 6). Finally, we de-
scribe related work (Section 7).

2 Linking Components
With existing technology, the two main options for struc-
turing component-based, low-level systems are to im-
plement components as object files linked byld (the
standard Unix linker), or to implement components as
objects in an object-oriented language (or, equivalently,
COM objects). Neither is satisfactory from the point of

& %

' $
ld⇒

(a) Typical system, expert’s imagination

& %

' $
ld⇒

(b) Typical system, actual shape

" !

ld⇒,,,l
ll

(c) Interposition:ld rejects ambiguous tabs

Figure 1: Linking withld

view of component kits; the reasons given inSection 2.1
and Section 2.2reflect our experience in trying each
within the OSKit. Though our experience with standard
linking may be unsurprising, our analysis helps to illu-
minate the parts of our Knit linking model, developed
specifically for component programming, described in
Section 2.3.

2.1 Conventional Linking

Figure 1(a)illustrates the way that a typical program is
linked, through the eyes of an expert who understands
the entire program. Each puzzle piece in the figure rep-
resents an object (.o) file. A tab on a puzzle piece is
a global variable or function provided by the object. A
notch in a puzzle piece is a global variable or function
used by the object that must be defined elsewhere in the
program. Differently shaped tabs and notches indicate
differently named variables and functions.

The balloon on the left-hand side represents the col-

lection of object files that are linked to create the pro-
gram. The programmer provides this collection of files
to the linker as a grab bag of objects. The right-hand
side of the figure shows the linker’s output. The linker
matches all of the tabs with notches, fitting the whole
puzzle together in the obvious way.

This bag-of-objects approach to linking is flexible. A
programmer can reuse any puzzle piece in any other pro-
gram, as long as the piece’s tabs and notches match other
pieces’ notches and tabs. Similarly, any piece of the
original puzzle can be replaced by a different piece as
long as it has the same tabs and notches. Linkers sup-
port various protocols for “overriding” a puzzle piece in
certain bags (i.e., archive files) without having to modify
the bag itself. In all cases, the tedious task of matching
tabs and notches is automated by the linker.

The bag-of-objects approach to linking has a num-
ber of practical drawbacks, however.Figure 1(b)illus-
trates the same linking process asFigure 1(a), but this
time more realistically, through the eyes of a program-
mer who is new to the program. Whereas the expert
imagines the program to be composed of well-defined
pieces that fit together in an obvious way, the actual
code contains many irrelevant tabs and notches (e.g., a
“global” variable that is actually local to that compo-
nent, or a spurious and unusedextern declaration) that
obscure a piece’s role in the overall program. Indeed,
some edges are neither clearly tabs nor clearly notches
(e.g., an uninitialized global variable might implement
an export or an import). If the new programmer wishes
to replace a piece of the puzzle, it may not be clear which
tabs and notches of the old piece must be imitated by the
new piece, and which tabs and notches of the old piece
were mere implementation artifacts.

The bag-of-objects approach also has a significant
technical limitation when creating new programs from
existing pieces.Figure 1(c)illustrates the limitation: a
new component is to be interposed between two existing
components, perhaps to log all calls between the top-
right component and the top-left component. To achieve
this interposition, the tabs and notches of the bottom
piece have the same shapes as the tabs and notches of
the top pieces. Now, however, the bag of objects does
not provide enough linking information to allowld to
resolve the ambiguous tabs and notches. (Should the
linker build a two-piece or a three-piece puzzle?) The
programmer will be forced to modify at least two of
the components (perhaps with preprocessor tricks) to
change the shape of some tabs and notches.

2.2 Object-Based Linking

At the opposite end of the spectrum fromld, com-
ponents can be implemented as objects in an object-
oriented language or framework. In this approach, the

links among components are defined by arbitrary code
that passes object references around. This is the view of
components implemented by object-based frameworks
such asCOM [22] and CORBA [26], and by some lan-
guages such as Limbo [6], which relies heavily on dy-
namic (module-oriented) linking.

Although linking via arbitrary run-time code is espe-
cially flexible, it is too dynamic for most uses of com-
ponents in systems software. Fundamentally, object-
oriented constructs are ill-suited for organizing code at
the module level [7, 30]. Although classes and objects
elegantly express run-time concepts, such as files and
network connections, they do not provide the structure
needed by programmers (and analysis tools) to organize
and understand the static architecture of a program.

Symptoms of misusing objects as components include
the late discovery of errors, difficulty in tracing the
source of link errors, a performance overhead due to vir-
tual function calls, and a high programmer overhead in
terms of manipulating reference counts. Code for link-
ing components is intermingled with regular program
statements, making the code difficult for both humans
and machines to analyze. Even typechecking is of lim-
ited use, since object-based code uses many dynamic
typechecks (i.e., downcasts) to verify that components
have the expected types, and must be prepared to recover
if this is not so. These problems all stem from using a
dynamic mechanism (objects) to build systems in which
the connections between components change rarely, if
ever, after the system is configured and initialized.

In short, object-based component languages offer lit-
tle help to the programmer in ensuring that components
are linked together properly. While objects can serve
a useful and important role in implementing data struc-
tures, they do as much harm as good at the component
level.

2.3 Unit Linking

The linking model forunits[8,9] eschews the bag of ob-
jects in favor of explicit, programmer-directed linking.
It also avoids the excessive dynamism and intractable
analysis of object-based linking by keeping the link-
ing specification separate from (and simpler than) the
core programming language. The model builds on pi-
oneering research for component-friendly modules in
Mesa [23], functors in ML [21], and generic packages
in Modula-3 [14] and Ada95 [18].

Linking with units includes specific linking instruc-
tions that connect each notch to its matching tab. The
linking specification may be hierarchical, in that a sub-
set of the objects can be linked to form a larger object (or
puzzle piece), which is then available for further linking.

Unit linking can thus express the use pattern in
Figure 1(c)that is impossible withld. Furthermore, un-

like object-based linking, a program’s explicit linking
specification helps programmers understand the inter-
face of each component and the role of each component
in the overall program. The program’s linking hierarchy
serves as a roadmap to guide a new programmer through
the program structure.

Unit linking also extends more naturally to cross-
component optimization than dold or object-based link-
ing. The interfaces and linking graph for a program
can be specified in advance, before any of the individ-
ual components are compiled. The compiler can then
combine the linking graph with the source code for sur-
rounding components to specialize the compilation of an
individual component. The linking hierarchy may also
provide a natural partitioning of components into groups
to be compiled with cross-component optimization, thus
limiting the need to know theentireprogram to perform
optimizations.

The static nature of unit linking specifications makes
them amenable to various forms of analysis, such as en-
suring that components are linked in a way that satis-
fies certain type and specification constraints. For ex-
ample, details on the adaptation of expressive type lan-
guages (such as that of ML) to units can be found in Flatt
and Felleisen’s original units paper [9]. This support for
static analysis provides a foundation for applying current
and future research to systems components.

3 Units for C
In this section we describe our unit model in more de-
tail, especially as it applies to C code. We first look at
a simplified model that covers component imports, ex-
ports, and linking. We then refine the model to address
the complications of real code, including initialization
constraints.

3.1 Simplified Model
Our linking model consists of two kinds of units:atomic
units, which are like the smallest puzzle pieces, andcom-
pound units, which are like puzzle pieces that contain
other puzzle pieces.Figure 2expands the model of a
unit given in Section 2.3to a more concrete represen-
tation for a unit implemented in C.1 According to this
representation, every atomic unit has three parts:

1. A set of imports (the top part of the box), which
are the names of functions and variables that will
be supplied to the unit by another unit.

2. A set ofexports(the bottom part of the box), which
are the names of functions and variables that are
defined by the unit and provided for use by other
units.

1Knit actually relies on a textual language for unit descriptions, as
shown inSection 3.3.

3. A set of top-level C declarations (the middle part of
the box), which must include a definition for each
exported name, and may include uses of each im-
ported name. Defined names that are not exported
will be hidden from all other units.

The example unit inFigure 2shows a component within
a Web server, as it might be implemented with the
OSKit. The component exports aserve_web func-
tion that inspects a givenURL and dispatches to either
serve_file or serve_cgi, depending on whether the
URL refers to a file orCGI script.

Atomic units are linked together to form compound
units, as illustrated inFigure 3. A compound unit has
a set of imports (the top part of the outer box) that can
be propagated to the imports of units linked to form the
compound unit. The compound unit explicitly specifies
how imports are propagated to other units; these propa-
gations can be visualized as arrows. A compound unit
also has a set of exports (the bottom part of the outer
box) that are drawn from the exports of the units linked
to form the compound unit. The compound unit explic-
itly specifies which exports are to be propagated. Be-
cause all connections areexplicitlyspecified, arrows can
connect imports and exports with different names, al-
lowing each unit to use locally meaningful names with-
out the danger of clashes in a global namespace.

The imports of the linked units that are not satisfied by
imports of the compound unit must be satisfied by link-
ing them to the exports of other units within the com-
pound unit. As before, the compound unit defines these
links. The units linked together in a compound unit need
not be atomic units; they can be compound units as well.

The example inFigure 3links the previous example
unit with another unit that logs requestedURLs. The
original serve_web function is wrapped with a new
one,serve_logged, to perform the logging. The re-
sulting compound unit still requiresserve_file and
serve_cgi to be provided by other units, and also re-
quires functions for manipulating files. The compound
unit’s export is the logged version ofserve_web.

3.2 Realistic Model
To make units practical for real systems code, we must
enhance the simple unit model in a number of ways.
Figure 4shows a more realistic model of units in Knit.

First, instead of importing and exporting individual
function names, Knit units import and export names in
bundles. For example, thestdio bundle groupsfopen,
fprintf, and many other functions. Grouping names
into bundles makes unit definitions more concise and
lets programmers define components in terms of stan-
dardized bundles.

Second, the simplified model shows source code in-
lined in the unit’s definition, but it is more practical to

General shape: import1 . . . importm

C code that
defines the exports
and uses the imports.

export1 . . . exportn

Example: serve_cgi serve_file

int serve_web(...) {
if (...)
serve_cgi(...);

else
serve_file(...);

}

serve_web

Figure 2: A unit implemented in C, ideally

import1 . . . importm

Linking graph over
specific units:

import

· · · · · · · · ·
export

?

export1 . . . exportn

Example: serve_cgi serve_file fopen...

serve_cgi serve_file

· · ·
serve_web

serve_unlogged fopen...

· · ·
serve_logged

?

serve_web
?

? ?
?

Figure 3: A compound unit, ideally

define units by referring to one or more external C files.2

To convert the source code to compiled object files, Knit
needs both the source files and their compilation flags.
Figure 4shows how the logging component’s content is
created by compilinglog.c using the include directory
oskit/include.

Third, realistic systems components have complex
initialization dependencies. If there were no cyclic im-
port relations among components, then initializations
could be scheduled according to the import graph. In
practice, however, cyclic imports are common, so the
programmer must occasionally provide fine-grained de-
pendency information to break cycles. A Knit unit there-
fore provides an explicit declaration of the unit’s ini-
tialization functions, plus information about the depen-
dencies of exports and initializers on imports. Based
on these declarations, Knit automatically schedules calls
to component initializers. Finalizers are treated analo-
gously to initializers, but are called after the correspond-
ing exports are no longer needed.

For example, the logging unit inFigure 4defines an
open_log function to initialize the component and a
close_log function to finalize it. The functions ex-

2Knit can actually work with C, assembly, and object code. Extend-
ing Knit to handle C++, or any other language that compiles to.o with
C-like conventions, would be straightforward but time-consuming.

ported in theserveLog bundle are declared to call the
functions in the importedserveWeb and stdio bun-
dles, and the initialization and finalization functions
open_log and close_log rely only on the functions
in thestdio bundle.

Theopen_log andclose_log dependency declara-
tions reveal a subtlety in declaring initialization con-
straints. The declaration “serveLog needsstdio” in-
dicates thatstdio must be initialized before any func-
tion in the bundleserveLog is called. However, this
declaration alone does not constrain the order of initial-
ization between the logging component and the standard
I/O component; it simply says that both must be initial-
ized before aserveLog function is used. In contrast,
the declaration “open_log needsstdio” ensures that
the standard I/O component is initialized before the log-
ging component, because the logging component’s ini-
tialization relies on standard I/O functions. The distinc-
tion between dependency levels is crucial to avoid over-
constraining the initialization order.

A final feature needed by real units is that imports
and exports may need to be renamed in order to as-
sociate Knit symbols with the identifiers used in the
actual (C) implementation of a unit. For example, a
serial console implementation might define a function
serial_putchar, but export it asputchar to match a

A bundle is a collection of names to import or
export. Each bundle is itself named.

Used by Knit
to get the unit’s
implementation.

︷ ︸︸ ︷
importBundle1 . . . importBundlem

Information for obtaining
a .o file: e.g., the name of
a .c file, the flags for
compiling it, and mappings
between Knit symbols and
C identifiers.

The.o file defines all
exports, initializers, and
finalizers.

initializer function
for each export
(optional)

finalizer function
for each export
(optional)

{initial,final}ization
dependencies of
exports on imports

exportBundle1 . . . exportBundlen

Used by Knit to
schedule automatic
calls to initializers
and finalizers.

Example:
serveWeb:{serve_web} stdio:{fopen, fprintf, . . .}

files: log.c
flags:-Ioskit/include
renameserveWeb.serve_web to serve_unlogged

renameserveLog.serve_web to serve_logged

open_log initializesserveLog

close_log finalizesserveLog

serveLog needsserveWeb, stdio
open_log needsstdio
close_log needsstdio

serveLog:{serve_web}

Figure 4: A unit implemented in C, more realistically. It exports a bundleserveLog containing the single functionserve_web.

more generic unit interface. Another example would be
a unit that both imports and exports a particular bundle
type, a pattern that occurs frequently in units designed
to “wrap” or interpose on other units. The logging unit
shown inFigure 4is such a unit; the implementation—
the code inlog.c—must be able to distinguish between
the importedserve_web and the exportedserve_web
functions. This distinction is made by renaming the im-
port or the export (or both) so that the functions have
different names in the C code.

3.3 Example Code
Due to space constraints, we omit a full description of
the Knit syntax. Nevertheless, to give a sense of Knit’s
current concrete syntax, we show how to express the run-
ning example.3 For the sake of exposition and maintain-
ing correspondence with the pictures, we have avoided

3The syntax continues to evolve as we gain experience. Also, al-
though we do not currently have a graphical tool for Knit, we are con-
sidering implementing one in the future.

some syntactic sugar that can shorten real unit defini-
tions.

Figure 5shows Knit declarations for the Web server
and logging components, plus a compound unit linking
them together. Before defining the units, the code de-
fines bundle typesServe andStdio (artificially brief in
this example) and a set of compiler flags,CFlags. These
declarations are used within the unit definitions.

As in the graphical notation inFigure 4, the Web
unit in Figure 5 imports two functions, one for serv-
ing files and another for servingCGI scripts. The nota-
tion for both imports and exports declares a local name
within the unit (the left hand side of the colon) and
specifies the type of the bundle (the right hand side
of the colon). This local name can be used in subse-
quent statements within the unit. Furthermore, all of
the exports (serveWeb) depend on all of the imports
(serveFile andserveCGI). The unit’s implementation
is in the fileweb.c, in Figure 6. The rename declara-
tions resolve the conflict between importing and export-

bundletype Serve = { serve_web }

bundletype Stdio = { fopen, fprintf }

flags CFlags = { "-Ioskit/include" }

unit Web = {

imports [serveFile : Serve,

serveCGI : Serve];

exports [serveWeb : Serve];

depends {
serveWeb needs (serveFile + serveCGI);

};

files { "web.c" } with flags CFlags;

rename {

serveFile.serve_web to serve_file;

serveCGI.serve_web to serve_cgi;

};

}

unit Log = {

imports [serveWeb : Serve,

stdio : Stdio];

exports [serveLog : Serve];

initializer open_log for serveLog;

finalizer close_log for serveLog;

depends {
(open_log + close_log) needs stdio;
serveLog needs (serveWeb + stdio);

};

files { "log.c" } with flags CFlags;

rename {

serveWeb.serve_web to serve_unlogged;

serveLog.serve_web to serve_logged;

};

}

unit LogServe = {

imports [serveFile : Serve,

serveCGI : Serve,

stdio : Stdio];

exports [serveLog : Serve];

link {

[serveWeb] <- Web <- [serveFile,serveCGI];

[serveLog] <- Log <- [serveWeb,stdio];

};

}

Figure 5: Unit descriptions for parts of a Web server

ing three functions with the same name by mapping the
importedserve_web identifiers in bundlesserveFile
andserveCGI onto the C identifiersserve_file and
serve_cgi.

The Log unit imports aserve_web function plus a
bundle of I/O functions, and exports aserve_web func-
tion. The initialization and finalization declarations pro-
vide the same information as the graphical version of the

web.c:
err_t serve_web(socket_t s, char *path) {

if (!strncmp(path, "/cgi-bin/", 9))

return serve_cgi(s, path + 9);

else

return serve_file(s, path);

}

log.c:
static FILE *log;

void open_log() {

log = fopen("ServerLog", "a");

}

err_t serve_logged(socket_t s, char *path) {

int r;

r = serve_unlogged(s, path);

fprintf(log, "%s -> %d\n", path, r);

return r;

}

Figure 6: Unit internals for parts of a Web server

unit in Figure 4. The dependency declarations specify
that the functionsopen_log andclose_log call func-
tions in thestdio bundle, and all of the exports depend
on all of the imports. Finally, therename declarations
resolve the conflict between the imported and exported
serve_web functions, this time by renaming both the
imported and exported versions.

TheLogServe compound unit links theWeb andLog
units together, propagating imports and exports as in
Figure 3. Specifically, in thelink section,

[serveWeb] <- Web <- [serveFile,serveCGI]

instantiates aWeb server unit using theserveFile and
serveCGI imports, and binds theWeb unit’s exported
bundle to the local nameserveWeb. The next line speci-
fies thatserveWeb is an import, along withstdio, when
instantiating theLog unit. The exported bundle of the
Log unit is bound toserveLog, which is also used in
the exports declaration of the compound unit, indicat-
ing that Log’s exports are propagated as exports from
the compound unit.

Figure 6 shows the C code implementing theWeb
andLog units. Only a few details have been omitted,
such as the#include lines. Withinweb.c, the names
serve_cgi and serve_file refer to imported func-
tions, andserve_web is the exported function. Simi-
larly, in log.c, serve_unlogged, fopen, andfprintf
are all imports, whileserve_logged is an export and
open_log is the initializer.

4 Checking Architectural Constraints

Beyond making components easier to describe and link,
Knit is designed to enable powerful analysis and opti-
mization tools for componentized systems code. In this
sense, Knit serves as a bridge between low-level imple-
mentation techniques and high-level program analysis
techniques.

Component kits, especially, need analysis tools to
help ensure that components are assembled correctly—
much more than libraries and fixed architectures need
such tools. In the case of a fixed (but extensible) archi-
tecture, a programmer can learn to code by a certain set
of rules and to debug each extension until it seems to
follow the rules. In the case of a component kit as flexi-
ble as the OSKit, however, the rules of proper construc-
tion change depending on which components are linked
together. For example, in a kernel using a “null im-
plementation” of threads, components need not provide
re-entrant procedures because the “null implementation”
keeps all execution single-threaded. But when the thread
component is replaced with an actual implementation of
threads, the rules for proper construction of the system
suddenly require re-entrant procedures.

These kinds of problems fall outside the scope of con-
ventional checking tools such as static type systems.
Type systems in most programming languages (includ-
ing C, C++, etc.) express concrete properties of code,
such as data representation and function calling conven-
tions, and do not express abstract properties like dead-
lock avoidance or whether code is in the top half or
bottom half of a device driver. More importantly, con-
ventional type systems detectlocal errors, but the prob-
lems that occur in component software are oftenglobal
errors, where each individual component composition
may be correct, but the entire system is wrong.

To start exploring the space of possible analyses over
component-based programs, we have included in Knit
a simple, extensible constraint system. This system al-
lows a programmer to define properties that Knit should
check, and then lets the programmer annotate each unit
declaration with the properties it satisfies.4

As an example property, consider the distinction be-
tween “top half” code, which includes functions like
pthread_lock or sleep that require a process context,
and “bottom half” code, which includes interrupt han-
dlers that work without a context. We would like Knit
to enforce the constraint that bottom-half code does not
directly call top-half code, an error that might happen
when a set of components is wired together incorrectly.

4Besides their value as checkable properties, constraints provide
useful documentation of the component’s behavior. Indeed, in our ex-
perience so far, constraints often duplicate information provided infor-
mally in documentation.

We can define this property in Knit with the following
declarations:

property context

type NoContext

type ProcessContext < NoContext

which declare a propertycontext and its two pos-
sible values, with a partial ordering on the property
values that indicatesNoContext is more general than
ProcessContext.

Given this definition, a programmer can annotate im-
ports and exports in units to establish property con-
straints. The examples below illustrate the three most
common forms of annotation:

context(pthread_lock) <= ProcessContext

context(panic) >= NoContext

context(printf) <= context(putchar)

These three forms of constraint indicate that (1) a func-
tion (in this case,pthread_lock) requires a process
context; (2) a function (e.g.,panic) must work in situa-
tions where there is no process context; and (3) a func-
tion (e.g.,printf) cannot be more flexible than some
other function (e.g.,putchar, which is used to imple-
mentprintf). Note that the last form of constraint al-
lows the constraints of one component to be propagated
through other components in a chain of links. In prac-
tice, we find that such propagation of constraints appears
most often, since most components are flexible enough
to adapt to many constraint environments.

When components are linked together, Knit analyzes
the components’ constraints and reports an error if the
constraints cannot be satisfied for some property (or if an
expected constraint declaration is missing). When Knit
reports a property failure, it displays the shortest chain of
constraints that demonstrates the source of the problem.

5 Experience
So far, we have applied Knit to two different sets of com-
ponents: (1) the OSKit [10], a large set of components
that includes many legacy components, and (2) a partial
implementation of the Click modular router [25], com-
prising a few new and cleanly constructed components.

As reported in the following sections, our experience
has been positive, but with two caveats. First, the cur-
rent implementation of Knit is a prototype, and the only
users to date are its implementors. Second, even the im-
plementors are unsatisfied with the current Knit syntax,
which leads to linking specifications that seem exces-
sively verbose for many tasks.

5.1 Knit and the OSKit
The OSKit is a collection of components for building
operating systems. Rather than defining a fixed structure

for an operating system, the OSKit provides raw mate-
rials for implementing whatever system structure a user
has in mind. OSKit components can be combined in
endless ways, and users are expected to write their own
extensions and replacements for many kinds of compo-
nents, depending on the needs of their designs. The
components range in size from large, such as aTCP/IP
stack derived from FreeBSD (over 18000 lines of non-
blank/non-comment/etc. code), to small, such as serial
console support (less than 200 lines of code). To use
these components, OSKit users—many of whom know
little about operating systems—must understand the in-
terface of each component, including its functional de-
pendencies and its initialization dependencies.

Before Knit: In the initial version of the OSKit, each
component was implemented by one or more object (.o)
files, which were stored in library archives, linked via
ld. A component could be replaced by providing a re-
placement object file/library before the original library
in theld linking line. Sinceld inspects its arguments in
order, and since it ignores archive members that do not
contribute new symbols (referenced by previously used
objects), a careful ordering ofld’s arguments would al-
low a programmer to override an existing component.

As the OSKit grew in size and user base, experience
soon revealed the deficiencies ofld as a component-
linking tool. As depicted inFigure 1(c), interposition
on component interfaces was difficult. Similarly, com-
ponents that provided different implementations of the
same interface would clash in the global namespace used
for linking by ld. Even just checking that the linked set
of components matched the intended set was difficult.

To address these issues (and, orthogonally, to repre-
sent run-time objects such as open files), a second ver-
sion of the OSKit introducedCOM abstractions for many
kinds of components. For example, the system console,
thread blocking, memory allocation, and interrupt han-
dling are all implemented byCOM components in the
OSKit. For convenience, theseCOM objects are typi-
cally stored in a central “registry component.”

Although addingCOM interfaces to the OSKit solved
many of the technical issues withld linking, in some
ways it worsened the usability problems. Programmers
who had successfully used the simple function interfaces
in the original OSKit at first rebelled at having to set up
seemingly gratuitous objects and indirections. Program-
mers became responsible for getting reference counts
right and for linking objects together by explicitly pass-
ing pointers amongCOM instances. In practice, merely
getting the reference counting right was a significant bar-
rier to experimenting with new system configurations.
Furthermore, inconvenientCOM interfaces proved con-
tagious. For example, to support a kernel in which dif-
ferent parts of the system use different memory pools,

the memory allocator component had to be made aCOM

object. This required changes to all code that uses allo-
cators, changes to the code that inserts objects into the
registry, and careful tweaking of the initialization order
to try to ensure that objects in the registry were allocated
with and subsequently used the correct allocators.

With bothld andCOM, component linking problems
interfere with the main purpose of the OSKit, which is to
be a vehicle for quick experimentation. The motivation
for Knit is to eliminate these problems, allowing pro-
grammers to specify which components to link together
as directly as possible.

After Knit: We have converted approximately 250
components—about half of the OSKit—and about 20
example kernels to Knit. The process of developing
Knit declarations for OSKit components revealed many
properties and interactions among the components that
a programmer would not have been able to learn from
the documentation alone. Annotating a component took
anywhere from 15 minutes (typically) to a full day
(rarely), depending partly on the complexity of the com-
ponent and its initialization requirements but mostly on
the quality of the documentation (e.g., whether the im-
ports and exports were clear).

Using Knit, we can now easily build systems that we
could not build before without undue effort. For ex-
ample, OSKit device drivers generate output by call-
ing printf, which is also used for application output.
Redirecting device driver output without Knit requires
creating two separate copies ofprintf, then renam-
ing printf calls in the device drivers either through
cut-and-paste (a maintenance problem) or preprocessor
magic (a delicate operation). Interposing on functions
requires similar tricks. Such low-tech solutions work
well enough for infrequent operations on a small set
of names, but they do not scale to component environ-
ments in which configuration changes are frequent. Us-
ing Knit, interposition and configuration changes can be
implemented and tested in just a few minutes.

Knit’s automatic scheduling of initialization code was
a significant aid in exploring kernel configurations. In
a monolithic or fixed-framework kernel, an expert pro-
grammer can write a carefully devised function that calls
all initializers in the right order, once and for all. This
is not an option in the OSKit, where the correct order
depends on which components are glued together. Pre-
vious versions of the OSKit provided canned initializa-
tion sequences, but, as just described, using these se-
quences would limit the programmer’s control over the
components used in the configuration. Knit allows the
expert to annotate components with their dependencies
and allows client programmers to combine precisely the
components they want with reliable initialization. Anno-
tations for device drivers, filesystems, networking, con-

sole, and other intertwined components have proven rel-
atively easy to get right at the local level, and the sched-
uler has performed remarkably well in practice.

The constraint system described inSection 4caught
a few small errors in existing OSKit kernels, writ-
ten by ourselves, OSKit experts. We added con-
straints to kernels composed of roughly 100 units.
Among those units, 35 required the addition of
constraints, of which 70% simply propagated their
context from imports to exports using the con-
straint “context(exports) <= context(imports)”
or stated that a component could be used without a pro-
cess context. These required little effort. The remainder
(device drivers and thread packages) required more care
because we had to examine the source code to determine
how individual components were used. The errors we
found were easy to fix once identified. The advantage
of Knit is that its constraint system found the bugs, and
will continue to detect new bugs as the code evolves.

A further benefit of using Knit is that it makes it easier
to create small, special-purpose kernels. The combina-
tion of knowing exactly which components are in our
kernels (and why) and the ease of replacing one compo-
nent with another enabled us to dramatically reduce the
size of some kernels. An extreme example is our small-
est kernel (the toyhello_world kernel) which is four
times smaller when built with Knit than without.

The Knit version of the OSKit continues to useCOM

for subsystems that behave more like objects than mod-
ules. For example, individual files and directories are
still implemented asCOM objects.

5.2 Clack
The elegant Click modular router [25] allows a program-
mer, or even a network administrator, to build a special-
purpose router by wiring together a set of components.
Click provides its own language for configuring routers,
so that a programmer might write

FromDevice(eth) -> Counter -> Discard

to create a “router” that counts packets.
Click is implemented in C++, and each router compo-

nent is implemented by a C++ class instance. A pro-
grammer can add new kinds of router components to
Click by deriving new C++ classes. To demonstrate that
Knit is general and more than just a tool for the OSKit,
we implemented a subset of Click version 1.0.1 with
Knit components instead of C++ classes.5 We dubbed
our new component suiteClack.

5Because Click’s router components are generally very small and
functionally simple, much of the actual component source code deals
with the Click-specific component framework and not with the func-
tional purpose of the components. For this reason, we decided to write
our components from scratch rather than adapt the existing Click com-
ponents to Knit.

Given Click as a model, implementing enough of
Clack in Knit to build anIP router (without handling
fragmentation orIP options) took a few days. A typ-
ical Clack component required several lines of C plus
several lines of unit description. Clack follows the ba-
sic architecture of Click, but the details have been Knit-
ified. For example, Click supports component initial-
ization through user-provided strings. Clack emulates
this feature with trivial components that provide initial-
ization data. Similarly, Click’s support for a (configure-
time) variable number of imports or exports is handled in
Clack with appropriate fan-in and fan-out components.
Clack does not emulate the more dynamic aspects of
Click, such as allowing a component to locate certain
other components at run time.

Overall, by avoiding the syntactic overhead required
to retrofit C++ classes as components, Clack defini-
tions are considerably more compact than corresponding
Click definitions (by roughly a factor of three for small
components). The size of Clack.o files was smaller than
Click .o’s by an even more dramatic amount (roughly a
factor of seven for small components). This is mainly
due to Clack’s fine-grained control of the router’s con-
tent and Click’s support for dynamic composition. The
overall performance of Clack is comparable to that of
Click.

In contrast, using the full Knit linking language to join
Clack components is more complex than using Click’s
special-purpose language. If Clack were to be used
by network administrators, we would certainly build a
(straightforward) translator from Click linking specifi-
cations to Knit linking expressions.

Based on our small experiment, we believe that Knit
would have been a useful tool for implementing the orig-
inal Click component set. The Click architecture fits
well in the Knit language model, and the Click configu-
ration language is conceptually close to the Knit linking
model. The one aspect of Click that does not fit well
into Knit is the rapid deployment of new configurations.
Click configurations consist of C++ object graphs that
can be dynamically generated, whereas Clack configu-
rations are resolved at link time. Note, however, that
recent work on Click performance by its authors also
conflicts with dynamic configuration [19].

To the extent that Knit is a bridge to analyses and
optimizations, we believe that Knit would be a supe-
rior implementation environment for Click compared
to C++. In Section 6, we report on cross-component
optimizations in Knit, and we show that they substan-
tially increase the performance of Clack. The constraint-
checking facilities of Knit can also be used to enforce
configuration restrictions among Clack components, en-
suring, for example, that components only receive pack-
ets of an appropriate type (Ethernet,IP, TCP, ARP, etc.).

These analyses are only a start, and a Knit-based Click
would be able to exploit future Knit developments.

6 Implementation and Performance

Component software tends to have worse performance
than monolithic software. Introducing component
boundaries invariably increases the number of function
calls in a program and hides opportunities for optimiza-
tion. However, Knit’s static linking language allows it
to eliminate these costs. Indeed, we can achieve useful
levels of optimization while exploiting the existing in-
frastructure of compilers and linkers.

In a typical use, the Knit compiler reads the link-
ing specification and unit files, generates initialization
and finalization code, runs the C compiler or assembler
when necessary, and ultimately produces object files.
The object files are then processed by a slightly modi-
fied version of GNU’sobjcopy, which handles renam-
ing symbols and duplicating object code for multiply-
instantiated units. Finally, these object files are linked
together usingld to produce the program.

To verify that Knit does not impose an unacceptable
overhead on programs, we timed Knit-based OSKit pro-
grams that were designed to spend most of their time
traversing unit boundaries. We compared these pro-
grams with equivalent OSKit programs built using tra-
ditional tools. The number of units in the critical path
ranged between 3 and 8 (including units such as memory
file systems, VGA device drivers, and memory alloca-
tors), with the total number of units between 37 and 72.
Tests were run between 10 and a million times, as appro-
priate. Knit was from 2% slower to 3% faster,±0.25%.
Note that these experiments were done without applying
the optimization that we describe next.

For cross-component optimization, we have imple-
mented a strategy that is deceptively simple to describe:
Knit merges the code from many different C files into a
single file, and then invokes the C compiler on the re-
sulting file. The task of merging C code is simple but
tedious; Knit must rename variables to eliminate con-
flicts, eliminate duplicate declarations for variables and
types, and sort function definitions so that the definition
of each function comes before as many uses as possible
(to encourage inlining in the C compiler). Fortunately,
these complexities are minor compared to building an
optimizing compiler. To limit the size of the file pro-
vided to the compiler, Knit can merge files at any unit
boundary, as directed by the programmer via the unit
specifications. When used in conjunction with the GNU
C compiler (which has poor interprocedural optimiza-
tion), this enables functions to be inlined across com-
ponent boundaries which may, in turn, enable further in-
traprocedural optimizations such as constant folding and

common subexpression elimination.6

To test the effectiveness of Knit’s optimization tech-
nique (which we callflattening), we applied it to our
Clack IP router. Since our focus was on the structure
of the router, we flattened only the router rather than the
entire kernel. For comparison, we rewrote our router
components in a less modular way: combining 24 sepa-
rate components into just 2 components, converting the
result to idiomatic C, and eliminating redundant data
fetches. The most important measure of an optimiza-
tion is, of course, the time the optimized program takes.
In this case, we also measured the impact of stalls in
the instruction fetch unit because there is a risk that
the inlining enabled by flattening would increase the
size of the router code, leading to poor I-cache per-
formance.7 Our experiments were performed on three
200 MHz Pentium Pro machines, each with 64 MB of
RAM and 256 KB of L2 cache, directly connected via
DEC Tulip 10/100 Ethernet cards, with the “machine in
the middle” functioning as the IP router.

The results are shown inTable 1. The manual trans-
formation gives a significant (21%) performance im-
provement, demonstrating that componentization can
have significant overhead. Flattening the modular ver-
sion of the router gives an even more significant (35%)
improvement: rather than harming I-cache behavior,
flattening greatly improves I-cache behavior. Examina-
tion of the assembly code reveals that flattening elim-
inates function call overhead (e.g., the cost of pushing
arguments onto the stack), turns function call nests into
compact straight-line code, and eliminates redundant
reads via common subexpression elimination. Combin-
ing both optimizations gives only a small (5%) addi-
tional improvement in performance, suggesting that the
optimizations obtain their gains from the same source.
Our overall conclusion is that we can eliminate most of
the cost of componentization by blindly merging code,
enabling conventional optimizing compilers to do the
rest.

Meanwhile, the authors of Click have been working
on special-purpose optimizations for their system [19].
Their optimizations include a “fast classifier” that gener-
ates specialized versions of generic components, a “spe-
cializer” that makes indirect function calls direct, and
an “xform” step that recognizes certain patterns of com-
ponents and replaces them with faster ones. While their
code base and optimizations are very different from ours,
the relative performance of their system and the effec-
tiveness of their optimizations provides a convenient
touchstone for our results. The performance of their base

6We usedgcc version 2.95.2 for all our experiments.
7We also measured number of instruction misses in the L1 and L2

caches: both the overall downward trend and the approximate ratio
between the three numbers were the same across all experiments.

hand flattened cycles instr. fetch text size
optimized stall cycles (bytes)

2411 781 109464√
1897 637 108246√
1574 455 106065√ √
1457 361 106305

Table 1: Clack router performance using various optimiza-
tions, measured in number of cycles from the moment a packet
enters the router graph to the moment it leaves. I-fetch stalls
were measured using the Pentium Pro counters and are re-
ported in cycles. The i-fetch stall numbers along with the given
code sizes reveal that inlining did not have a negative effect.

version cycles
unoptimized 2486
optimized 1146

Table 2: Click router performance, with and without all three
MIT optimizations, measured as above. The Click routers were
executed in the same OSKit-derived kernel and on the same
hardware as the Clack routers.

and optimized systems is shown inTable 2. We note that
the performance of their base system is approximately
the same as ours (3% slower) but that the effect of ap-
plying all three Click optimizations is significantly bet-
ter than the two Clack optimizations (54%). Considering
that Knit achieves its performance increase by blindly
merging code, without any profiling or tuning of Clack
by programmers, we again interpret the results of our ex-
periment to indicate that Knit would make a good imple-
mentation platform for Click-like systems. We believe
that Knit would save implementors of such systems time
and energy implementing basic optimizations, allowing
them to concentrate on implementing domain-specific or
application-specific optimizations.

The core of our current Knit compiler prototype con-
sists of about 6000 lines of Haskell code, of which
roughly 500 lines implement initializers and finaliz-
ers, 500 lines implement constraints, and 1500 lines
implement flattening. Our prototype implementation
is acceptably fast—more than 95% of build time is
spent in the C compiler and linker—although constraint-
checking more than doubles the time taken to run Knit.

7 Related Work
Much of the early research in component-based systems
software involves the design and implementation of mi-
crokernels such as Mach [1] and Spring [13]. With an
emphasis on robustness and architectures for flexibil-
ity and extensibility at subsystem boundaries, microker-

nel research is essentially complementary to research on
component implementation and composition tools like
Knit. More recently, the Pebble [11] microkernel-based
OS has an emphasis on flexibly combining components
in protection domains, e.g., in separate servers or in a
single protection domain. However, the actual set of
components is quite fixed.

More closely related research involves the use of com-
ponent kits for building systems software. MMLite [16]
followed our OSKit lead by providing a variety ofCOM-
based components for building low-level systems. MM-
Lite takes a very aggressive approach to componentiza-
tion and provides certain features that the current OSKit
and Knit lack, such as the ability to replace system com-
ponents at run-time. The Scout operating system [24]
and its antecedentx-kernel [17] consist of a modest num-
ber of modules that can be combined to create software
for “network appliances” and protocols. The Click sys-
tem [25] also focuses on networking, but specifically tar-
gets packet routers (e.g.,IP routers) and its components
are much smaller than Scout’s. Scout and Click, like
Knit, rely on “little languages” outside of C to build
and optimize component compositions, and to sched-
ule component initializations, but only Knit provides a
general-purpose language that can be used to describe
both new and existing components. Languages like C++
and Java have also dealt with automatic initialization of
static variables, but through complex (and, in the case of
C++, unpredictable) rules that give the programmer little
control.

Knit’s ability to work with unmodified C code distin-
guishes it from projects such as Fox [15] and Ensem-
ble [20], which rely on a high-level implementation lan-
guage, or systems such as pSOS [31] and the currently
very small eCos [29]. Both eCos and pSOS provide
configuration languages/interfaces but neither really has
“components”: individual subsystems can be included
or excluded from the system, but there is no way to
change the interconnections between components. In
contrast to Ensemble, it should be noted that Knit pro-
vides a more “lightweight” system for reasoning about
component compositions. This is a deliberate choice:
we intend for Knit to be usable by systems programmers
without training in formal methods.

Like Knit, OMOS[27,28] enables the reuse of existing
code through interface conversion on object files (e.g.,
renaming a symbol, or wrapping a set of functions). Un-
like Knit, however,OMOS does not provide a configura-
tion language that is conducive to static analysis.

Commercial tools, such as Visual Basic and tools us-
ing it, help programmers design, browse, and link soft-
ware components that conform to theCOM or CORBA

standards. Such tools and frameworks currently lack
the kinds of specification information that would en-

able automated checking of component configurations
beyond datatype interfaces, and the underlying object-
based model of components makes cross-component op-
timization exceedingly difficult.

Knit’s unit language is derived from the compo-
nent model of Flatt and Felleisen [9], who provide an
extensive overview of related programming languages
research. Module work that subsequently achieved
similar goals includes the recursive functors of Crary
et al. [5] and the typed-assembly linker of Glew and
Morrisett [12].

CM [3] solves for ML many of the same problems
that Knit solves for C, but ML provides CM with a pre-
existing module language and a core language with well-
defined semantics. Unlike Knit, CM disallows recursive
modules, thus sidestepping initialization issues. Further,
CM relies on ML’s type system to perform consistency
checks, instead of providing its own constraint system.

The lazy functional programming community rou-
tinely uses higher-order functions to glue small com-
ponents into larger components, relies on sophisticated
type systems to detect errors in component composition,
and makes use of lazy evaluation to dynamically de-
termine initialization order in cyclic component graphs.
For example, the Fudgets GUI component library [4]
uses a dataflow model similar to the one used in Click
(and Clack) but the data sent between elements can have
a variety of types (e.g., menu selections, button clicks,
etc.) instead of a single type (e.g., packets). This ap-
proach has been refined and applied to different domains
by a variety of authors.

The GenVoca model of software components [2] has
several similarities to our work: their “realms” corre-
spond to our bundle types, their “type equations” cor-
respond to our linking graphs, and their “design rules”
correspond to our constraint systems. In its details, how-
ever, the GenVoca approach is quite different from ours.
GenVoca is based on the notion of agenerator, which
is a compiler for a domain-specific language. GenVoca
components are program transformations rather than
containers of code; a GenVoca compiler therefore syn-
thesizes code from a high-level (and domain-specific)
program description. In contrast, Knit promotes the
reuse of existing (C) code and enables flexible compo-
sition through its separate, unit-based linking language.
Notably, Knit allows cyclic component connections—
important in many systems—and can check constraints
in such graphs. The GenVoca model of components and
design rules, however, is based on (non-cyclic) compo-
nent trees.

8 Conclusion
From our experiences in building and using OSKit com-
ponents, and that of our clients in using them, we believe

that existing tools do not adequately address the needs of
componentized software. To fill the gap, we have devel-
oped Knit, a language for defining and linking systems
components. Our initial experiments in applying Knit to
the OSKit show that Knit provides improved support for
component programming.

The Knit language continues to evolve, and future
work will focus on making components and linking
specifications easier to define. In particular, we plan to
generalize the constraint-checking mechanism to reduce
repetition between different constraints and, we hope,
to unify scheduling of initializers with constraint check-
ing. We may also explore support for dynamic linking,
where the main challenge involves the handling of con-
straint specifications at dynamic boundaries. Continued
exploration of Knit within the OSKit will likely produce
improvements to the language and increase our under-
standing of how systems components should be struc-
tured.

Knit is a first step in a larger research program to bring
strong analysis and optimization techniques to bear on
componentized systems software. We expect such tools
to help detect deadlocks, detect unsafe locking, reduce
abstraction overheads, flatten layered implementations,
and more. All of these tasks require the well-defined
component boundaries and static linking information
provided by Knit. We believe that other researchers and
programmers who are working on componentized sys-
tems could similarly benefit by using Knit.

Availability
Source and documentation for our Knit prototype is
available underhttp://www.cs.utah.edu/flux/.

Acknowledgments
We are grateful to Mike Hibler, Patrick Tullmann, John
Regehr, Robert Grimm, and David Andersen for provid-
ing many comments and suggestions that helped us to
improve this paper. Mike deserves special thanks, for
special help. We are indebted to the members of the MIT
Click group, both for Click itself and for sharing their
work on Click optimization long before that work was
published. Finally, we thank the anonymous reviewers
and our shepherd, David Presotto, for their constructive
comments and suggestions.

References
[1] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid,

A. Tevanian, and M. Young. Mach: A New Kernel Foun-
dation for UNIX Development. InProc. of the Summer
1986 USENIX Conf., pages 93–112, June 1986.

[2] D. Batory and B. J. Geraci. Composition Validation and
Subjectivity in GenVoca Generators.IEEE Transactions
on Software Engineering, pages 67–82, Feb. 1997.

http://www.cs.utah.edu/flux/

[3] M. Blume and A. W. Appel. Hierarchial Modularity.
ACM Transactions on Programming Languages and Sys-
tems, pages 812–846, July 1999.

[4] M. Carlsson and T. Hallgren. Fudgets: A Graphical User
Interface in a Lazy Functional Language. InProc. of the
Conference on Functional Programming and Computer
Architecture, 1993.

[5] K. Crary, R. Harper, and S. Puri. What is a Recur-
sive Module? InProc. ACM SIGPLAN ’99 Conf.
on Programming Language Design and Implementation
(PLDI), pages 50–63, Atlanta, GA, May 1999.

[6] S. Dorward and R. Pike. Programming in Limbo. In
Proc. of the IEEE Compcon 97 Conf., pages 245–250,
San Jose, CA, 1997.

[7] R. B. Findler and M. Flatt. Modular Object-Oriented
Programming with Units and Mixins. InProc. of the
Third ACM SIGPLAN International Conference on Func-
tional Programming (ICFP ’98), pages 94–104, Balti-
more, MD, Sept. 1998.

[8] M. Flatt. Programming Languages for Component Soft-
ware. PhD thesis, Rice University, June 1999.

[9] M. Flatt and M. Felleisen. Units: Cool Units for
HOT Languages. InProc. ACM SIGPLAN ’98 Conf.
on Programming Language Design and Implementation
(PLDI), pages 236–248, June 1998.

[10] B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and
O. Shivers. The Flux OSKit: A Substrate for OS and
Language Research. InProc. of the 16th ACM Sympo-
sium on Operating Systems Principles, pages 38–51, St.
Malo, France, Oct. 1997.

[11] E. Gabber, C. Small, J. Bruno, J. Brustoloni, and A. Sil-
berschatz. The Pebble Component-Based Operating Sys-
tem. In Proc. of the USENIX 1999 Annual Technical
Conf., June 1999.

[12] N. Glew and G. Morrisett. Type-Safe Linking and Mod-
ular Assembly Language. InProc. of the 26th ACM
SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 250–261, San Antonio, TX,
Jan. 1999.

[13] G. Hamilton and P. Kougiouris. The Spring Nucleus: a
Microkernel for Objects. InProc. of the Summer 1993
USENIX Conf., pages 147–159, Cincinnati, OH, June
1993.

[14] S. P. Harbison.Modula-3. Prentice Hall, 1991.

[15] B. Harper, E. Cooper, and P. Lee. The Fox Project: Ad-
vanced Development of Systems Software. Computer
Science Department Technical Report 91–187, Carnegie
Mellon University, 1991.

[16] J. Helander and A. Forin. MMLite: A Highly Componen-
tized System Architecture. InProc. of the Eighth ACM
SIGOPS European Workshop, pages 96–103, Sintra, Por-
tugal, Sept. 1998.

[17] N. C. Hutchinson and L. L. Peterson. Design of thex-
kernel. InProc. of SIGCOMM ’88, pages 65–75, Aug.
1988.

[18] International Organization for Standardization.Ada 95
Reference Manual. The Language. The Standard Li-
braries, Jan. 1995.

[19] E. Kohler, B. Chen, M. F. Kaashoek, R. Morris, and
M. Poletto. Programming language techniques for mod-
ular router configurations. Technical Report MIT–LCS–
TR–812, MIT Laboratory for Computer Science, Aug.
2000.

[20] X. Liu, C. Kreitz, R. van Renesse, J. Hickey, M. Hayden,
K. Birman, and R. Constable. Building reliable, high-
performance communication systems from components.
In Proc. of the 17th ACM Symposium on Operating Sys-
tems Principles, pages 80–92, Dec. 1999.

[21] D. MacQueen. Modules for Standard ML. InProc. of the
1984 ACM Conf. on Lisp and Functional Programming,
pages 198–207, 1984.

[22] Microsoft Corporation and Digital Equipment Corpora-
tion. Component Object Model Specification, Oct. 1995.
274 pages.

[23] J. G. Mitchell, W. Mayberry, and R. Sweet.Mesa Lan-
guage Manual, 1979.

[24] A. B. Montz, D. Mosberger, S. W. O’Malley, L. L. Pe-
terson, T. A. Proebsting, and J. H. Hartman. Scout: A
Communications-oriented Operating System. Technical
Report 94–20, University of Arizona, Dept. of Computer
Science, June 1994.

[25] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek.
The Click Modular Router. InProc. of the 17th ACM
Symposium on Operating Systems Principles, pages 217–
231, Dec. 1999.

[26] Object Management Group.The Common Object Re-
quest Broker: Architecture and Specification, June 1999.
Revision 2.3. OMG document formal/98–12–01. Part of
the CORBA 2.3 specification.

[27] D. B. Orr, J. Bonn, J. Lepreau, and R. Mecklenburg. Fast
and Flexible Shared Libraries. InProc. of the Summer
1993 USENIX Conf., pages 237–251, June 1993.

[28] D. B. Orr, R. W. Mecklenburg, P. J. Hoogenboom, and
J. Lepreau. Dynamic Program Monitoring and Transfor-
mation Using the OMOS Object Server. In D. Lilja and
P. Bird, editors,The Interaction of Compilation Technol-
ogy and Computer Architecture. Kluwer Academic Pub-
lishers, 1994.

[29] Red Hat, Inc. eCos: Embedded Configurable Operating
System, Version 1.3.
http://www.redhat.com/products/ecos/.

[30] C. A. Szyperski. Import Is Not Inheritance — Why We
Need Both: Modules and Classes. InECOOP ’92: Eu-
ropean Conf. on Object-Oriented Programming, volume
615 ofLecture Notes in Computer Science, pages 19–32.
Springer-Verlag, July 1992.

[31] WindRiver, Inc. pSOS.
http://www.windriver.com/.

http://www.redhat.com/products/ecos/
http://www.windriver.com/

	Abstract
	Components for Systems Software
	Linking Components
	Conventional Linking
	Object-Based Linking
	Unit Linking

	Units for C
	Simplified Model
	Realistic Model
	Example Code

	Checking Architectural Constraints
	Experience
	Knit and the OSKit
	Clack

	Implementation and Performance
	Related Work
	Conclusion
	Availability
	Acknowledgments
	References

