SIGINFO: The Tricky Cryptographic Hash Function
;login: Enters a New Phase of Its Evolution
For over 20 years, ;login: has been a print magazine with a digital version; in the two decades previous, it was USENIX’s newsletter, UNIX News. Since its inception 45 years ago, it has served as a medium through which the USENIX community learns about useful tools, research, and events from one another. Beginning in 2021, ;login: will no longer be the formally published print magazine as we’ve known it most recently, but rather reimagined as a digital publication with increased opportunities for interactivity among authors and readers.
Since USENIX became an open access publisher of papers in 2008, ;login: has remained our only content behind a membership paywall. In keeping with our commitment to open access, all ;login: content will be open to everyone when we make this change. However, only USENIX members at the sustainer level or higher, as well as student members, will have exclusive access to the interactivity options. Rik Farrow, the current editor of the magazine, will continue to provide leadership for the overall content offered in ;login:, which will be released via our website on a regular basis throughout the year.
As we plan to launch this new format, we are forming an editorial committee of volunteers from throughout the USENIX community to curate content, meaning that this will be a formally peer-reviewed publication. This new model will increase opportunities for the community to contribute to ;login: and engage with its content. In addition to written articles, we are open to other ideas of what you might want to experience.
Cryptographic hash functions are one of the building blocks of modern computing systems. Although they were originally developed for signing digital signatures with public key cryptography, they have found uses in digital forensics, digital timestamping, and cryptocurrency schemes like Bitcoin.
Cryptographic hash functions like MD5, SHA-1, and BLAKE3 are widely used and appreciated by programmers, end users, and even lawyers! Nevertheless, I'll start off this column with a basic description of what hash functions are and the hash functions that are used today. Then I'll delve back to the first references to them that I've been able to find and give a bit of their history. I'll briefly touch on their uses in cryptography and then discuss how they also found use in digital forensics. I'll end with a puzzle from Stuart Haber, one of the co-inventors of the blockchain concept. Unless otherwise noted, all of the timing runs were performed on my Mac mini (vintage 2018) with a six-core Intel Core i5 processor running at 3 GHz. The hashing was done with OpenSSL 1.1.1d, compiled September 10, 2019, that ships with the Anaconda Python distribution.