
MiniBox: A Two-Way Sandbox for
x86 Native Code

Yanlin Li, Jonathan McCune, Jim Newsome,

Adrian Perrig, Brandon Baker, and Will Drewry

Carnegie Mellon University
Google, Inc.

Platform as a Service
•  One of the most commercialized forms of

cloud computing
– One million active applications were running on

Google App Engine in 2012[1]

•  It is critical to protect the OS from the large
number of applications in PaaS
– Sandbox is deployed to protect the guest OS

2
[1] http://gigaom.com/2012/06/28/google-app-engine-by-the-numbers/

Guest OS Guest OS

Current Sandbox
•  Only one-way protection

– Protect OS from malicious Apps
•  App is exposed to malicious code in guest OS

– Not desired by customers

3

Hypervisor

Dom 0
VMI

Hypervisor-based architecture

APP APP

cloud code

Hardware hardware

sandbox

Customer’s app

Goal: Two-Way Sandbox
•  Two-way protection for x86 native code

– OS Protection: protect a benign OS from a
misbehaving application

– Application Protection: protect an
application from a malicious OS

4

Wait.. It has been solved!?
•  Intel Software Guard Extensions (SGX) [1]

–  Hardware-based two-way memory isolation

•  TrustVisor (TV) [2]

–  Hypervisor based two-way memory isolation

•  Only isolate a Piece of Application Logic (PAL)
from the OS

5

OS

Isolation Module

Sensitive PAL

Non-sensitive PAL

Subvert the OS

SGX or TV

[1] Innovative technology for CPU based attestation and sealing. HASSP (2013)
[2] TrustVisor: Efficient TCB reduction and attestation. IEEE S&P (2010)

Combine Sandbox and Isolation
•  Sandbox to confine the non-isolated PAL

– Sandbox exposes large interface to the
application

– Developers need split the application
•  require substantial porting effort

6

OS

Isolation Module

Sensitive PAL

Non-sensitive PAL Subvert the OS
SGX or TV

Sandbox for OS
protection

Break
sandbox

Combine Sandbox and Isolation
•  Deploy sandbox in an isolated environment

–  Avoid porting effort
–  Sandbox exposes large interface to the application

•  Iago attacks [1]:
–  A malicious OS subverts a protected process by

returning a carefully chosen sequence of return
values to sensitive system calls

7

OS

Isolation Module

Sensitive PAL

Non-sensitive PAL

SGX or TV

Sandbox for OS
protection

Break sandbox

Iago attacks by
syscall return values

[1] Iago attacks: Why the system call API is a bad untrusted RPC interface. ASPLOS 2013

Challenges
•  It is promising to combine a one-way sandbox

and a two-way memory isolation mechanism to
establish two-way protection

•  Challenges
1.  System design of combining a one-way sandbox

and a memory isolation mechanism to establish
two-way protection

2.  Minimize and secure the interface between software
modules for OS protection and the application

3.  Protect the application against Iago attacks

8

Contributions
1.  Design, implement, and evaluate MiniBox, the first

attempt toward a practical two-way sandbox for x86
native applications.

2.  Demonstrate it is possible to provide a minimized
and secure communication interface between
software modules for OS protection and the
application to protect against each other.

3.  Demonstrate it is possible to protect against Iago
attacks, and provide an efficient execution
environment for the application.

9

Outline
•  Motivations
•  Goal and Challenges
•  Assumptions & Adversary Model
•  MiniBox Design
•  Implementation & Evaluation
•  Related Work
•  Conclusion

10

Assumptions
•  For both protections

–  No physical attacks (e.g., CPU is trusted)
–  Cryptographic primitives are secure

•  For application protection
–  Applications do not have memory safety bugs

(e.g., buffer overflows) or insecure design
•  For OS protection

–  The small system call interface that OS exposes to
the application on MiniBox is free of vulnerabilities

–  OS does not have concurrency vulnerabilities in
system call wrappers[1]

11
[1] WATSON, R. N. M. Exploiting concurrency vulnerabilities in system call wrappers.
In Proceedings of USENIX Workshop on Offensive Technologies (2007).

Adversary Model
•  Adversary model for App protection

–  OS is controlled by adversaries
–  Attempt to access the app’s memory
–  Attempt to perform Iago attacks

•  Adversary model for OS protection
–  App is malicious and contains privileged

instructions
–  Attempt to subvert and control the OS

•  Do not prevent
–  DoS attacks or side channel attacks

12

MiniBox Overview
1.  Combine one-way sandbox for x86 native code and

hypervisor-based two-way memory isolation
2.  Split sandbox components into service runtime

modules and OS protection modules
–  Include the service runtime in the isolated

memory space with the App to support App
execution

3.  Expose a subset of system call interface to the App,
and Split system calls into sensitive calls and non-
sensitive calls

–  Handle sensitive calls in the isolated environment
4.  Minimize and secure the communication interface

between OS protection modules and the application
13

MiniBox Architecture

14

Hypervisor

OS
protection

(e.g.,
parameter
sanitizing,

access
control)

LibOS
(e.g., dynamic
memory, TLS,
multithreading,
secure I/O)

Context switch

Param marshaling

Syscall dispatcher

OS

Hardware
C

ontext sw
itch

P
aram

 unm
arshal

P
rogram

 loader

Non-sensitive calls Environment
Switch

Hypercall

Mutually Isolated
Execution Environment (MIEE)

Regular Environment
x86 native app

x86 native App

Sensitive
PAL

Non-sensitive
 PAL

Hardware TCB for
App protection

TCB for
OS protection

Minimized and Secure
Communication Interface

•  Minimized communication interface between
two environments
–  In load time: program loader
–  In run time: only system call interface

•  Secure communication between two
environments
–  Application specifies system call information
–  Hypervisor passes system call parameters and

return values between two environments
–  OS protection modules check the system call

parameters

15

Exceptions/Interrupts and Debugging
•  Exceptions and interrupts

– Hypervisor handles exceptions and non-
maskable interrupts

– Maskable interrupts are disabled

•  MiniBox Debugging mode
– The hypervisor-based memory isolation is

disabled
– One app-layer module copies system call

parameters between two environments
– Developers can use GDB for applicaiton

debugging
16

Implementation
•  MiniBox prototype

–  Public implementation of TrustVisor (Version
0.2.1) [1]

–  Native Client open source project [2]

–  Support for multi-core and both Intel and AMD
processors

–  Ubuntu 10.04 as the guest OS

17

Modules SLoC
Hypervisor 14414 (TrustVisor), add 691
NaCl ELF file Loader add 299
Service runtime in MIEE
(including the LibOS)

3550

[1] Design, implementation and verification of an extensible and modular hypervisor framework. IEEE S&P (2013)
[2] Native Client: A sandbox for portable, un- trusted x86 native code. IEEE S&P (2009)

Evaluation
•  Microbechmarks

– System call overhead
•  Application benchmarks

–  I/O-bound applications
– CPU-bound applications

18

System Call Overhead

19

•  System calls handled by the OS have high overhead
on MiniBox
•  Each call causes environment switches
•  Hypervisor-based Environment switches on MiniBox

cause high overhead for non-sensitive system calls
•  System calls handled inside the Mutually Isolated

Execution Environment have similar performance to
those on vanilla NaCl

Handled by OS in
regular environment

Handled by LibOS in
MIEE

I/O-Bound Application (Zlib)

20

•  Zlib application
–  Read 1 MB of file data from file system
–  Compress the read data

•  File I/O is expensive on MiniBox
•  We expect that cache buffer will improve the

application performance in practice

CPU-Bound Applications

21

•  AES key search
–  Encrypt 128-Byte plain text for 200, 000 times

•  BitCoin
–  Perform 200, 000 SHA-256 computation

•  MiniBox does not add any noticeable overhead to
CPU-bound applications over NaCl

Related Work
•  Protecting applications

–  HOFMANN, O., DUNN, A., KIM, S., LEE, M., AND WITCHEL, E. InkTag: Secure
applications on an untrusted operating system. ASPLOS, 2013.

–  BAUMANN, A., PEINADO, M., HUNT, G., ZMUDZINSKI, K., ROZAS, C. V., AND
HOEKSTRA, M. Secure execution of un-modified applications on an untrusted host.
http://research. microsoft.com/apps/pubs/default.aspx?id=204758, 2013.

–  TA-MIN, R., LITTY, L., AND LIE, D. Splitting interfaces: Making trust between
applications and operating systems configurable. SOSP, 2006.

–  MCCUNE, J. M., LI, Y., QU, N., ZHOU, Z., DATTA, A., GLIGOR, V., AND PERRIG, A.
TrustVisor: Efficient TCB reduction and attestation. IEEE S&P, 2010.

–  SINGARAVELU, L., PU, C., HA ̈RTIG, H., AND HELMUTH, C. Reducing TCB
complexity for security-sensitive applications. EuroSys, 2006.

•  Sandbox for OS protection
–  PORTER, D. E., BOYD-WICKIZER, S., HOWELL, J., OLINSKY, R., AND HUNT, G. C.

Rethinking the library OS from the top down. SIGPLAN, 2011.
–  YEE, B., SEHR, D., DARDYK, G., CHEN, J. B., MUTH, R., ORMANDY T., OKASAKA,

S., NARULA, N., FULLAGAR, N., AND GOOGLE INC. Native Client: A sandbox for
portable, un- trusted x86 native code. IEEE S&P, 2009.

–  JANA, S., PORTER, D. E., AND SHMATIKOV, V. TxBox: Building secure, efficient
sandboxes with system transactions. In IEEE S&P, 2011.

–  KIM, T., AND ZELDOVICH, N. Practical and effective sand- boxing for non-root users.
In Proceedings of USENIX ATC, 2013.

22

Conclusion
•  We made the first attempt toward a practical

two-way sandbox for x86 native code.
•  We proposed a generic architecture for

establishing two-way protection for x86
native code on commodity computer
systems.

•  We anticipate that MiniBox will be widely
adopted on systems where two-way
protection is desired (e.g., the PaaS cloud
computing platforms).

23

24

Email: yanlli@cmu.edu

Native Client[1]

•  NaCl: a sandbox technology for running
Native Module (NaM) on the Web
– Software Fault Isolation (SFI)

•  NaM runs in its own segmentations

– Disassembler & Validator
•  Guarantee that there are no privileged instructions

that can break the SFI in the NaM

25
[1] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Orm, S. Okasaka, N. Narula, N. Fullagar. Native client: A
sandbox for portable, untrusted x86 native code. Oakland, 2009

Native Client[1]

•  Service Runtime in NaCl
– System call interfaces for NaM

•  Special toolchain to build NaM
– Support service call APIs

26

Context
Switch

Native
Module
(NaM)

Legacy OS or Libs

System Call
Dispatcher

Native Client Sandbox

[1] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Orm, S. Okasaka, N. Narula, N. Fullagar. Native client: A
sandbox for portable, untrusted x86 native code. Oakland, 2009

27

TrustVisor[1]

•  A small hypervisor that:
–  Isolates a Piece of Application Logic (PAL)

from the legacy OS by nested pages
– Provides µTPM APIs to the PAL
– Measures integrity of PAL for attestation

•  Integrity Measurement
– Hardware TPM à TrustVisor
– TrustVisor à PAL

•  Shortcomings
– No system call from PAL
– Porting Effort

APP
B

APP
A PAL

Untrusted
Legacy OS

 TrustVisor uTPM

µTPM
API

 Hardware TPM

[1] J M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig. TrustVisor: Efficient TCB reduction and
attestation. Oakland, 2010

Exceptions/Interrupts and Debugging

•  Exceptions and interrupts
– Hypervisor handles exceptions and non-

maskable interrupts
– Maskable interrupts are disabled

•  Debugging mode
– The hypervisor-based memory isolation is

disabled
– One app-layer module copies system call

parameters between two environments

28

Against Iago Attacks
•  Handle sensitive calls in LibOS inside

the isolated execution environment
•  LibOS supports

– Dynamic memory management
– Thread local storage management
– Multi-thread management
– Secure file I/O

29

MiniBox Architecture

CPU

Hypervisor

Hardware

Low-level System
(e.g., Guest OS

or VMM)

Regular Environment Mutually Isolated Execution Environment (MIEE)

x86 Native App

Context Switch

Param Marshaling

System Call
Dispatcher

System
call

dispatcher
(param

sanitizing,
access
control)

Environment
Switch

System
Calls

GDTLDT

Thread Scheduler

TPM

uTPM

Hypercalls

Memory Management,
TLS Management,
Multi-threading,

Secure !le IO, uTPM API

Context Sw
itch

TCB for
App Protection

Security-Sensitive
Piece of App Logic (PAL)

Non-Sensitive
Piece of App Logic (PAL)

OS Protection
Modules

Param
 U

nm
arshaling

Program
 loader

30

