sslab
system software

GPUvm: Why Not Virtualizing GPUs
at the Hypervisor?

Yusuke Suzuki*
in collaboration with
Shinpei Kato**, Hiroshi Yamada***, Kenji Kono*

* Keio University
** Nagoya University
*** Tokyo University of Agriculture and Technology



Graphic Processing Unit (GPU)- 2
 GPUs are used for data-parallel computations
— Composed of thousands of cores
— Peak double-precision performance exceeds 1 TFLOPS
— Performance-per-watt of GPUs outperforms CPUs
 GPGPU is widely accepted for various uses

— Network Systems [Jang et al. ’11], FS [Silberstein et al. "13]
[Sun et al. ’12], DBMS [He et al. ’08] etc.
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Motivation f

e GPU is not the first-class citizen of cloud
computing environment

— Can not multiplex GPGPU among virtual machines (VM)
— Can not consolidate VMs that run GPGPU applications

e GPU virtualization is necessary

— Virtualization is the norms in the clouds
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Virtualization Approaches 7w

* Categorized into three approaches
1. 1/0 pass-through
2. APl remoting
3. Para-virtualization
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e Amazon EC2 GPU instance, Intel VT-d

— Assign physical GPUs to VMs directly
— Multiplexing is impossible
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APl remoting # sslab

e GVIM [Gupta et al. ’09], rCUDA [Duato et al "10],
VMGL [Largar-Cavilla et al. ’07] etcC.
— Forward API calls from VMs to the host’s GPUs
— API and its version compatibility problem
— Enlarge the trusted computing base (TCB)
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Para-virtualization P

* VMWare SVGA2 [Dowty '09] LoGV [Gottschalk et al. ’10]

— Expose an ideal GPU device model to VMs
— Guest device driver must be modified or rewritten
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Goals

* Fully virtualize GPUs

— allow multiple VMs to share a single GPU

— without any driver modification
e Vanilla driver can be used “as is” in VMs

e GPU runtime can be used “as is” in VMs

* |dentify performance bottlenecks of full

virtualization
— GPU details are not open...
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GPU Internals P

* PCle connected discrete GPU (NVIDIA, AMD GPU)
* Driver accesses to GPU w/ MMIO through PCle BARs

 Three major components
— GPU computing cores, GPU channel and GPU memory
Driver, Apps (CPU

GPU GPU [ -~
e | chnnet [RAR S

EERREEEE - opy computingcore




GPU Channel & Computing Coresm

* GPU channel is a hardware unit to submit
commands to GPU computing cores

* The number of GPU channels is fixed
 Multiple channels can be active at a time
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GPU Memory et

* Memory accesses from computing cores are
confined by GPU page tables
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Unified Address Space P

 GPU and CPU memory spaces are unified

— GPU virtual address (GVA) is translated CPU physical
addresses as well as GPU physical addresses (GPA)
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DMA handling in GPU P

« DMAs from computing cores are issued with GVA
— Confined by GPU Page Tables

e DMAs must be isolated between VMs
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GPUvm overview

* |solate GPU channel, computing cores & memory
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GPUvm Architecture /

* Expose the Virtual GPU to each VM and
intercept & aggregate MMIO to them

e Maintain Virtual GPU views and arbitrate

accesses to physical GPU
VM
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GPUvm components

1. GPU shadow page table

— Isolate GPU memory

2. GPU shadow channel
— Isolate GPU channels

3. GPU fair-share scheduler

— Isolate GPU time using GPU computing cores



GPU Shadow Page Table Azdab

* Create GPU shadow page tables

— Memory accesses from GPU computing cores are
confined by GPU shadow page tables
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GPU Shadow Page Table & _~sjab

DMA

system software

« DMA is also confined by GPU shadow page tables
— Since DMA is issued with the GVA

* Other DMAs can be interceited by MMIO handling
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GPU Shadow Channel #sslab

* Channels are logically partitioned for VMs
* Maintain mappings between virtual & shadow

channels
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GPU Fair-Share Scheduler ~sslab

system software

* Schedules non-preemptive command executions
 Employs BAND scheduling algorithm [Kato et al. ’12]

* GPUvm can employ existing algorithms

— VGRIS [Yu et al. "13], Pegasus [Gupta et al. ’12], TimeGraph [Kato et al. ’11],
Disengaged Scheduling [Menychtas et al. "14]
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* |Introduce several optimization techniques
to reduce overhead caused by GPUvm
1. BAR Remap
2. Lazy Shadowing
3. Para-virtualization



BAR Remap m

« MMIO through PCle BARs is intercepted by GPUvm

 Allow direct BAR accesses to the

non-virtualization-sensitive areas
Naive w/ BAR Remap

Guest Driver Guest Driver

Direct Access




Lazy Shadowing _Fsslab

system software

e Page-fault-driven shadowing cannot be applied

— When fault occurs, computation cannot be resumed
* Scanning entire page tables incurs high overhead

* Delay the reflection to the shadow page tables until
the channel is used
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Para-virtualization

* Shadowing is still a major source of overhead

* Provide para-virtualized driver

— Manipulate page table entries through hypercalls
(similar to Xen direct-paging)

— Provide a multicall interface that can batch several
hypercalls into one (borrowed from Xen)

* Eliminate cost of scanning entire page tables
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* Implementation
— Xen 4.2.0, Linux 3.6.5

— Nouveau [http://nouveau.freedesktop.org/]
* Open-source device driver for NVIDIA GPUs

— Gdev [Kato et al. ’12]
* Open-source CUDA runtime

e Xeon E5-24700, NVIDIA Quadro6000 GPU

 Schemes
— Native: non-virtualized
— FV Naive: Full-virtualization w/o optimizations
— FV Optimized: FV w/ optimizations
— PV: Para-virtualization



Relative time (log-scaled)
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Overhead

Significant overhead over Native

— Can be mitigated by optimization techniques

— PV is faster than FV since it eliminates shadowing
— PV is still 2-3x slower than Native
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Performance at Scale

 FVincurs large overhead in 4- and 8- VM case
— Since page shadowing locks GPU resources

M Kernel execution time M Virtualization overhead

__400
5
£ 300
9
$ 200
[
Q
£ 100 R I I I
= o  Wm__mm mm . H B
(O] o) Q e (O] o) Q
g E 2 B E g B E g B E g
= ® = s = ® = ®
o o o o
o o o o
> > > >
L L L L
2 8

Number of GPU Contexts




Performance Isolation _#sslab

* In FIFO and CREDIT a long-running task occupies
GPU

e BAND achieves fair-share
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/O pass-through
— Amazon EC2

APl remoting

— GVIM [Gupta et al.’09], VCUDA [Shi et al. ’12],
rCUDA [Duato et al '10],
VMGL [Largar-Cavilla et al. ’07], gVirtuS [Giunta et al. ’10]

Para-virtualization
— VMware SVGA?2 [Dowty et al. ’09], LOGV [Gottschalk et al. ’10]

Full-virtualization

— XenGT ([Tian et al. ’14]
— GPU Architecture is different (Integrated Intel GPU)
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* GPUvm shows the design of full GPU
virtualization
— GPU shadow page table
— GPU shadow channel
— GPU fair-share scheduler

e Full-virtualization exhibits non-trivial overhead

— MMIO handling
* Intercept TLB flush and scan page table

— Optimizations and para-virtualization
reduce this overhead

— However still 2-3 times slower



