sslab
system software

GPUvm: Why Not Virtualizing GPUs
at the Hypervisor?

Yusuke Suzuki*
in collaboration with
Shinpei Kato**, Hiroshi Yamada***, Kenji Kono*

* Keio University
** Nagoya University
*** Tokyo University of Agriculture and Technology

Graphic Processing Unit (GPU)- 2
 GPUs are used for data-parallel computations
— Composed of thousands of cores
— Peak double-precision performance exceeds 1 TFLOPS
— Performance-per-watt of GPUs outperforms CPUs
 GPGPU is widely accepted for various uses

— Network Systems [Jang et al. ’11], FS [Silberstein et al. "13]
[Sun et al. ’12], DBMS [He et al. ’08] etc.

NVIDIA/GPU

‘\/‘6‘

L1 L1 L1 |L1yjL1yLl L1
L2 Cache

¢
Video Memory,[€ ﬂ i!i

: : sslab
Motivation f

e GPU is not the first-class citizen of cloud
computing environment

— Can not multiplex GPGPU among virtual machines (VM)
— Can not consolidate VMs that run GPGPU applications

e GPU virtualization is necessary

— Virtualization is the norms in the clouds

VM

Share Hypervisor
a single GPU

among VMs

Physical
Machine

" : - sslab
Virtualization Approaches 7w

* Categorized into three approaches
1. 1/0 pass-through
2. APl remoting
3. Para-virtualization

sslab
/O pass-through P

e Amazon EC2 GPU instance, Intel VT-d

— Assign physical GPUs to VMs directly
— Multiplexing is impossible

Assign GPUs
to VMs
directly ——————r——— 7"~

GPU GPU |, GPU

Hypervisor

APl remoting # sslab

e GVIM [Gupta et al. ’09], rCUDA [Duato et al "10],
VMGL [Largar-Cavilla et al. ’07] etcC.
— Forward API calls from VMs to the host’s GPUs
— API and its version compatibility problem
— Enlarge the trusted computing base (TCB)

VM 4\
Wrapper Wrapper

Driver Library v4 | Library v5
Hypervisor

Library v4

Forwarding
GPU AP calls

: : : sslab
Para-virtualization P

* VMWare SVGA2 [Dowty '09] LoGV [Gottschalk et al. ’10]

— Expose an ideal GPU device model to VMs
— Guest device driver must be modified or rewritten

VM VM
Library Library

PV Driver PV Driver

Hypervisor

Hypercalls
GPU

Goals

* Fully virtualize GPUs

— allow multiple VMs to share a single GPU

— without any driver modification
e Vanilla driver can be used “as is” in VMs

e GPU runtime can be used “as is” in VMs

* |dentify performance bottlenecks of full

virtualization
— GPU details are not open...

sslab
system software

VM
Library
Driver
Virtual GPU Virtual GPU
A -

GPU

GPU Internals
Proposal: GPUvm
Experiments
Related Work
Conclusion

Outline

sslab

system software

/ Sslab
GPU Internals P

* PCle connected discrete GPU (NVIDIA, AMD GPU)
* Driver accesses to GPU w/ MMIO through PCle BARs

 Three major components
— GPU computing cores, GPU channel and GPU memory
Driver, Apps (CPU

GPU GPU [-~
e | chnnet [RAR S

EERREEEE - opy computingcore

GPU Channel & Computing Coresm

* GPU channel is a hardware unit to submit
commands to GPU computing cores

* The number of GPU channels is fixed
 Multiple channels can be active at a time

GPU Commands
GPU

Channel § Channel

‘ on computing cores

AT B
. ./ -. 1/ . Computing

GPU Computing Cores

Commands are executed|

GPU Memory et

* Memory accesses from computing cores are
confined by GPU page tables

0Jo oJe
GPU Commands

GPU
Channel

GPU Computing Cores

GPU Physical Address

A sslab
Unified Address Space P

 GPU and CPU memory spaces are unified

— GPU virtual address (GVA) is translated CPU physical
addresses as well as GPU physical addresses (GPA)

m
GPU Commands

GPU
. | Gva___o [
- d Page
GPU Computing Cores Table CPU physical address
~ GPA \
GPU Memory \Uniﬁed Address Space/ CPU Memory

DMA handling in GPU P

« DMAs from computing cores are issued with GVA
— Confined by GPU Page Tables

e DMAs must be isolated between VMs

M'I-!_
GPU Commands

GPU GPU

Cha1ne|

- -- . Memcpy(GVAl, GVA2) Ty
. . d Page
GVAL1 translated GVAZ2 translated

GPU Computing Cores to GPA to CPU physical address

Table

GPU Memory > DMA | CPU Memory

-]

: sslab
Outline A sslat

Motivation & Goals
GPU Internals
Proposal: GPUvm
Experiments
Related Work
Conclusion

/sslab

/ system software

GPUvm overview

* |solate GPU channel, computing cores & memory

B - virtyal | B -] yirtyal

- eru B8+ aru

GPU GPU GPU GPU GPU

Channel Channel | Channel Channel
Assigned to VM1 Assigned to VM2

Assigned | Assigned
to VM1 to VM2

GPU Computing Cores

. sslab
GPUvm Architecture /

* Expose the Virtual GPU to each VM and
intercept & aggregate MMIO to them

e Maintain Virtual GPU views and arbitrate

accesses to physical GPU
VM

VM

Library Library

Driver Driver

Virtual GPU Virtual GPU

GPUvm Hypervisor

Intercept MMIOs

sslab
GPUvm components

1. GPU shadow page table

— Isolate GPU memory

2. GPU shadow channel
— Isolate GPU channels

3. GPU fair-share scheduler

— Isolate GPU time using GPU computing cores

GPU Shadow Page Table Azdab

* Create GPU shadow page tables

— Memory accesses from GPU computing cores are
confined by GPU shadow page tables

VM1 \VA\Y, P
GPU Commands

Virtual GPU Virtual GPU GPU
» GPU ; : GVA
Channel anne anne
cp do
Access not dDIC . =
allowed aple

Access allowed

GPU Shadow Page Table & _~sjab

DMA

system software

« DMA is also confined by GPU shadow page tables
— Since DMA is issued with the GVA

* Other DMAs can be interceited by MMIO handling

GPU Commands

Virtual GPU

Virtual GPU

o0 GPU [N N]
Channel

GPU GPU "
Channel Channel

_ @,I

DMA allowed

GPU Shadow Channel #sslab

* Channels are logically partitioned for VMs
* Maintain mappings between virtual & shadow

channels
VM1 VM2
Virtual GPU Virtual GPU

GPU Virtual Channels GPU Virtual Channels

Mappings between
virtual & shadow channels

GPU

64 65 66 -

Shadow
Assigned to VM1 Assigned to VM2 GPU
Channels

GPU Fair-Share Scheduler ~sslab

system software

* Schedules non-preemptive command executions
 Employs BAND scheduling algorithm [Kato et al. ’12]

* GPUvm can employ existing algorithms

— VGRIS [Yu et al. "13], Pegasus [Gupta et al. ’12], TimeGraph [Kato et al. ’11],
Disengaged Scheduling [Menychtas et al. "14]

VM1
P PR
[[I s
—— Channels
————— GPU
VM1 fair-share VM2

scheduler

___ Assigned , DLETEEEE | GPU Shadow GPU
to VM1 to VM2 Channels

—> > = > >
—> Time

A - . sslab
Optimization Techniques 7«

* |Introduce several optimization techniques
to reduce overhead caused by GPUvm
1. BAR Remap
2. Lazy Shadowing
3. Para-virtualization

BAR Remap m

« MMIO through PCle BARs is intercepted by GPUvm

 Allow direct BAR accesses to the

non-virtualization-sensitive areas
Naive w/ BAR Remap

Guest Driver Guest Driver

Direct Access

Lazy Shadowing _Fsslab

system software

e Page-fault-driven shadowing cannot be applied

— When fault occurs, computation cannot be resumed
* Scanning entire page tables incurs high overhead

* Delay the reflection to the shadow page tables until
the channel is used

> Time
TLB flush Channel
becomes
I Scan 3 times I)
Scan active
Naive > =
Channel

I becomes
Scan only once I S ctive
lenore
. S

Shadowing

. . . sslab
Para-virtualization

* Shadowing is still a major source of overhead

* Provide para-virtualized driver

— Manipulate page table entries through hypercalls
(similar to Xen direct-paging)

— Provide a multicall interface that can batch several
hypercalls into one (borrowed from Xen)

* Eliminate cost of scanning entire page tables

' sslab
Outline _#sslab

Motivation & Goals
GPU Internals
Proposal: GPUvm
Experiments
Related Work
Conclusion

: sslab
Evaluation Setup A sslat

* Implementation
— Xen 4.2.0, Linux 3.6.5

— Nouveau [http://nouveau.freedesktop.org/]
* Open-source device driver for NVIDIA GPUs

— Gdev [Kato et al. ’12]
* Open-source CUDA runtime

e Xeon E5-24700, NVIDIA Quadro6000 GPU

 Schemes
— Native: non-virtualized
— FV Naive: Full-virtualization w/o optimizations
— FV Optimized: FV w/ optimizations
— PV: Para-virtualization

Relative time (log-scaled)

sslab
Overhead

Significant overhead over Native

— Can be mitigated by optimization techniques

— PV is faster than FV since it eliminates shadowing
— PV is still 2-3x slower than Native

1000.00

100.00

10.00

1.00

* Hypercalls, MMIO interception

LN

275.39 Shadowmg & MMIO handling reduced

Shadowing eliminated

N 208
— +0
FV Naive FV Optimized ‘ PV Native ‘

madd (short term workload) ‘

sslab
system software

Performance at Scale

 FVincurs large overhead in 4- and 8- VM case
— Since page shadowing locks GPU resources

M Kernel execution time M Virtualization overhead

__400
5
£ 300
9
$ 200
[
Q
£ 100 R I I I
= o Wm__mm mm . H B
(O] o) Q e (O] o) Q
g E 2 B E g B E g B E g
= ® = s = ® = ®
o o o o
o o o o
> > > >
L L L L
2 8

Number of GPU Contexts

Performance Isolation _#sslab

* In FIFO and CREDIT a long-running task occupies
GPU

e BAND achieves fair-share

100 100 100
==short ==long ==short ==long ==short ==long
X 75 75 75
c
O
5
@ 50 50 50 CoONIOINPONIN-0sentdNO0000hee000-
=
- i
5 25 25 25
O
0 T T T T T 0 T T T T T 0 T T T T T
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Time (seconds) Time (seconds) Time (seconds)

FIFO CREDIT BAND

' sslab
Outline _#sslab

Motivation & Goals
GPU Internals
Proposal: GPUvm
Experiments
Related Work
Conclusion

sslab
R e I a t e d W O r k system software

/O pass-through
— Amazon EC2

APl remoting

— GVIM [Gupta et al.’09], VCUDA [Shi et al. ’12],
rCUDA [Duato et al '10],
VMGL [Largar-Cavilla et al. ’07], gVirtuS [Giunta et al. ’10]

Para-virtualization
— VMware SVGA?2 [Dowty et al. ’09], LOGV [Gottschalk et al. ’10]

Full-virtualization

— XenGT ([Tian et al. ’14]
— GPU Architecture is different (Integrated Intel GPU)

. sslab
Conclusion A sslat

* GPUvm shows the design of full GPU
virtualization
— GPU shadow page table
— GPU shadow channel
— GPU fair-share scheduler

e Full-virtualization exhibits non-trivial overhead

— MMIO handling
* Intercept TLB flush and scan page table

— Optimizations and para-virtualization
reduce this overhead

— However still 2-3 times slower

