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parallel_for<uint64_t>(0, G.num_nodes(),  
   [&](uint64_t node) { 
      double val = 0.0; 
      for (edge_t w_idx = G.r_begin[node]; 
             w_idx < G.r_begin[node+1];  
             w_idx ++)  { 
          node_t w = G.r_node_idx [w_idx]; 
          val += G_pg_rank[w] / (G.begin[w+1] - G.begin[w]); 
      } 
      G_pg_rank_nxt[node] = (1 - d) / N + d * val; 
  }); 

Setting: parallel loops on shared-memory machines 

for (uint64_t node = 0; node < G.num_nodes(); node++) { 

} 



Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 

Setting: parallel loops on shared-memory machines 

parallel_for<uint64_t>(0, G.num_nodes(),  
   [&](uint64_t node) { 
      double val = 0.0; 
      for (edge_t w_idx = G.r_begin[node]; 
             w_idx < G.r_begin[node+1];  
             w_idx ++)  { 
          node_t w = G.r_node_idx [w_idx]; 
          val += G_pg_rank[w] / (G.begin[w+1] - G.begin[w]); 
      } 
      G_pg_rank_nxt[node] = (1 - d) / N + d * val; 
  }); 



Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 

Setting: parallel loops on shared-memory machines 

parallel_for<uint64_t>(0, G.num_nodes(),  
   [&](uint64_t node) { 
      double val = 0.0; 
      for (edge_t w_idx = G.r_begin[node]; 
             w_idx < G.r_begin[node+1];  
             w_idx ++)  { 
          node_t w = G.r_node_idx [w_idx]; 
          val += G_pg_rank[w] / (G.begin[w+1] - G.begin[w]); 
      } 
      G_pg_rank_nxt[node] = (1 - d) / N + d * val; 
  }); 

Loop index type and bounds 

Loop body  
(C++ lambda) 
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Batch size / load imbalance trade-off 
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(Actual data – #out-edges of the top 1000 
nodes in the SNAP Twitter dataset) 
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Batch size / load imbalance trade-off 

Divide into large batches 
 
Reduce contention distributing work 
Risk load imbalance  
 

Divide into small batches 
 
Increase contention distributing work 
Achieve better load balance 
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Batch size / load imbalance trade-off 

Typically, choose manually – 
but getting this right 

depends on (1) algorithm, 
(2) machine, (3) data 

Divide into large batches 
 
Reduce contention distributing work 
Risk load imbalance  
 

Divide into small batches 
 
Increase contention distributing work 
Achieve better load balance 
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Example performance 
OpenMP static & dynamic loops 

8-socket SPARC T5 
16 cores per socket 
8 h/w threads per core 
 
PageRank 
SNAP LiveJournal data set 
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Batch size / load imbalance trade-off 

Divide into large batches 
 
Reduce contention 
Risk load imbalance  
 

Divide into small batches 
 
Increase contention distributing work 
Achieve better load balance 
 

Typically, choose manually – 
but getting this right 

depends on (1) algorithm, 
(2) machine, (3) data 

Our approach: support 
efficient small batches 
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Approach, consider a loop 0..65536, batch size 8 

8 sockets 
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Approach, consider a loop 0..65536, batch size 8 

8 sockets 

16 cores per socket 

8 h/w contexts per core 

Distribute iterations at  
start of loop down to  
per-core counters 

0..512 512..1024 

Aggregate requests  
upwards within a core 

Per-core lock 
Per-thread request flags 
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Approach, consider a loop 0..65536, batch size 8 

8 sockets 

16 cores per socket 

0..8 8..16 16..24 8 h/w contexts per core 

Distribute iterations at  
start of loop down to  
per-core counters 

24..512 512..1024 

Aggregate requests  
upwards within a core 

Per-core lock 
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Approach, consider a loop 0..65536, batch size 8 

8 sockets 

16 cores per socket 

0..8 8..16 16..24 8 h/w contexts per core 

Distribute iterations at  
start of loop down to  
per-core counters 

24..512 512..1024 

Aggregate requests  
upwards within a core 

Per-core lock 
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Hierarchical distribution with request combining 

• Combining implemented over flags in a single line in the shared L1 D$ 

• On TSO: no memory fences 

• Synchronization remains core-local if work is evenly distributed 

• Threads waiting for combining can use mwait 
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Asynchronous combining of requests 

Synchronous 

Execute batch 

Set flag 

Wait for / 
fetch next 

batch 
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Asynchronous combining of requests 

Synchronous 

Execute batch 

Set flag 

Wait for / 
fetch next 

batch 

Asynchronous 

Execute batch 

Set flag 

Wait for / 
fetch next 

batch 

Intuition: the time taken 
to execute the current 
batch provides an 
opportunity for other 
cores to service our 
request without us 
needing to wait 
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Nested loops 

• Abundant parallelism, why use nesting? 
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Nested loops 

• Abundant parallelism, why use nesting? 

• Contention between iterations of an outer loop 

• E.g., betweenness-centrality: 

– Iterate over vertices 

– BFS traversal from each vertex (plus additional work) 

Better cache locality within each traversal  
than between (unrelated) traversals 

Run at most one of 
these per L2 D$ 
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Nested loops 

• Number loops “inside out” 

– Level 0 => innermost 

– Level 1 => may contain a level-0 loop 

• Each thread also has a level 
– It will execute iterations <= its own level 

– Level 0 thread: only executes inner-most loop iterations 

– … 

 

Controlling thread -> loop allocation 
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Nested loops: non-nested level 0 – all threads participate 
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Nested loops: outer (level 1) – just 1+5 participate 
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Nested loops: inner (level 0) –help respective leaders 
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Microbenchmark results 
SPARC T5-8, 1024 threads 
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Microbenchmark results 
SPARC T5-8, 1024 threads Per-core + asynchronous combining (blue) 

Per-core + synchronous combining (green) 

Per-socket counters 
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PageRank – SNAP LiveJournal (4.8M vertices, 69M edges) 

OpenMP Callisto-RTS 
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PageRank – SNAP LiveJournal (4.8M vertices, 69M edges) 

17% improvement in 
best-case performance 
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Betweenness-centrality 
SNAP Slashdot data set (82.1K nodes, 948K edges), T5-8 
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Comparison with Galois 
SNAP Twitter data set 
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Comparison with Galois 
SNAP LiveJournal data set 
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Future work 

• Continuing development of the programming model 

• Control over data placement as well as threads 

– Initial examples from graph workloads generally have random accesses: spread data 
and threads widely in the machine 

– (See “Shoal”, USENIX ATC 2015) 

• Interactions between multiple parallel workloads 

– OS/runtime system interaction (ref our prior work at EuroSys 2014) 

– Placement in the machine 

– Control over degree of parallelism 
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