

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Tim Harris, Oracle Labs
Stefan Kaestle, ETH Zurich

7 July 2015

2

Callisto-RTS: Fine-Grain
Parallel Loops

The following is intended to provide some insight into a line of research in Oracle Labs. It is intended for

information purposes only, and may not be incorporated into any contract. It is not a commitment to

deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions.

Oracle reserves the right to alter its development plans and practices at any time, and the development,

release, and timing of any features or functionality described in connection with any Oracle product or

service remains at the sole discretion of Oracle. Any views expressed in this presentation are my own and

do not necessarily reflect the views of Oracle.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

parallel_for<uint64_t>(0, G.num_nodes(),
 [&](uint64_t node) {
 double val = 0.0;
 for (edge_t w_idx = G.r_begin[node];
 w_idx < G.r_begin[node+1];
 w_idx ++) {
 node_t w = G.r_node_idx [w_idx];
 val += G_pg_rank[w] / (G.begin[w+1] - G.begin[w]);
 }
 G_pg_rank_nxt[node] = (1 - d) / N + d * val;
 });

Setting: parallel loops on shared-memory machines

for (uint64_t node = 0; node < G.num_nodes(); node++) {

}

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Setting: parallel loops on shared-memory machines

parallel_for<uint64_t>(0, G.num_nodes(),
 [&](uint64_t node) {
 double val = 0.0;
 for (edge_t w_idx = G.r_begin[node];
 w_idx < G.r_begin[node+1];
 w_idx ++) {
 node_t w = G.r_node_idx [w_idx];
 val += G_pg_rank[w] / (G.begin[w+1] - G.begin[w]);
 }
 G_pg_rank_nxt[node] = (1 - d) / N + d * val;
 });

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Setting: parallel loops on shared-memory machines

parallel_for<uint64_t>(0, G.num_nodes(),
 [&](uint64_t node) {
 double val = 0.0;
 for (edge_t w_idx = G.r_begin[node];
 w_idx < G.r_begin[node+1];
 w_idx ++) {
 node_t w = G.r_node_idx [w_idx];
 val += G_pg_rank[w] / (G.begin[w+1] - G.begin[w]);
 }
 G_pg_rank_nxt[node] = (1 - d) / N + d * val;
 });

Loop index type and bounds

Loop body
(C++ lambda)

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Batch size / load imbalance trade-off

Iteration number

It
er

at
io

n
 e

xe
cu

ti
o

n
 t

im
e

 Fixed amount
of work in each
iteration

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Batch size / load imbalance trade-off

Iteration number

It
er

at
io

n
 e

xe
cu

ti
o

n
 t

im
e

 Fixed amount
of work in each
iteration

Divide iteration space
evenly between threads
and get good load balancing

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Batch size / load imbalance trade-off

Iteration number

It
er

at
io

n
 e

xe
cu

ti
o

n
 t

im
e

 Variable amount
of work per
iteration

(Actual data – #out-edges of the top 1000
nodes in the SNAP Twitter dataset)

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Batch size / load imbalance trade-off

Divide into large batches

Reduce contention distributing work
Risk load imbalance

Divide into small batches

Increase contention distributing work
Achieve better load balance

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Batch size / load imbalance trade-off

Typically, choose manually –
but getting this right

depends on (1) algorithm,
(2) machine, (3) data

Divide into large batches

Reduce contention distributing work
Risk load imbalance

Divide into small batches

Increase contention distributing work
Achieve better load balance

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Example performance
OpenMP static & dynamic loops

8-socket SPARC T5
16 cores per socket
8 h/w threads per core

PageRank
SNAP LiveJournal data set

1024

512

256

128

64

32

1024 256 64 16 4

T
h
re

a
d
s

Batch size

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
o
rm

a
liz

e
d
 e

x
e
c
u
tio

n
 tim

eBest performance: 0.26s

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Batch size / load imbalance trade-off

Divide into large batches

Reduce contention
Risk load imbalance

Divide into small batches

Increase contention distributing work
Achieve better load balance

Typically, choose manually –
but getting this right

depends on (1) algorithm,
(2) machine, (3) data

Our approach: support
efficient small batches

Overview

1

2

3

4

Request combining

Asynchronous work requests

Non-work-conserving nested loops

Results

Overview

1

2

3

4

Request combining

Asynchronous work requests

Non-work-conserving nested loops

Results

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Approach, consider a loop 0..65536, batch size 8

8 sockets

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Approach, consider a loop 0..65536, batch size 8

8 sockets

16 cores per socket

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Approach, consider a loop 0..65536, batch size 8

8 sockets

16 cores per socket

8 h/w contexts per core

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Approach, consider a loop 0..65536, batch size 8

8 sockets

16 cores per socket

8 h/w contexts per core

Distribute iterations at
start of loop down to
per-core counters

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Approach, consider a loop 0..65536, batch size 8

8 sockets

16 cores per socket

8 h/w contexts per core

Distribute iterations at
start of loop down to
per-core counters

0..512 512..1024

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Approach, consider a loop 0..65536, batch size 8

8 sockets

16 cores per socket

8 h/w contexts per core

Distribute iterations at
start of loop down to
per-core counters

0..512 512..1024

Aggregate requests
upwards within a core

Per-core lock
Per-thread request flags

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Approach, consider a loop 0..65536, batch size 8

8 sockets

16 cores per socket

8 h/w contexts per core

Distribute iterations at
start of loop down to
per-core counters

0..512 512..1024

Aggregate requests
upwards within a core

Per-core lock

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Approach, consider a loop 0..65536, batch size 8

8 sockets

16 cores per socket

8 h/w contexts per core

Distribute iterations at
start of loop down to
per-core counters

0..512 512..1024

Aggregate requests
upwards within a core

Per-core lock

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Approach, consider a loop 0..65536, batch size 8

8 sockets

16 cores per socket

8 h/w contexts per core

Distribute iterations at
start of loop down to
per-core counters

0..512 512..1024

Aggregate requests
upwards within a core

Per-core lock

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Approach, consider a loop 0..65536, batch size 8

8 sockets

16 cores per socket

8 h/w contexts per core

Distribute iterations at
start of loop down to
per-core counters

0..512 512..1024

Aggregate requests
upwards within a core

Per-core lock

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Approach, consider a loop 0..65536, batch size 8

8 sockets

16 cores per socket

8 h/w contexts per core

Distribute iterations at
start of loop down to
per-core counters

0..512 512..1024

Aggregate requests
upwards within a core

Per-core lock

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Approach, consider a loop 0..65536, batch size 8

8 sockets

16 cores per socket

0..8 8..16 16..24 8 h/w contexts per core

Distribute iterations at
start of loop down to
per-core counters

24..512 512..1024

Aggregate requests
upwards within a core

Per-core lock

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Approach, consider a loop 0..65536, batch size 8

8 sockets

16 cores per socket

0..8 8..16 16..24 8 h/w contexts per core

Distribute iterations at
start of loop down to
per-core counters

24..512 512..1024

Aggregate requests
upwards within a core

Per-core lock

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Hierarchical distribution with request combining

• Combining implemented over flags in a single line in the shared L1 D$

• On TSO: no memory fences

• Synchronization remains core-local if work is evenly distributed

• Threads waiting for combining can use mwait

Overview

1

2

3

4

Request combining

Asynchronous work requests

Non-work-conserving nested loops

Results

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Asynchronous combining of requests

Synchronous

Execute batch

Set flag

Wait for /
fetch next

batch

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Asynchronous combining of requests

Synchronous

Execute batch

Set flag

Wait for /
fetch next

batch

Asynchronous

Execute batch

Set flag

Wait for /
fetch next

batch

Intuition: the time taken
to execute the current
batch provides an
opportunity for other
cores to service our
request without us
needing to wait

Overview

1

2

3

4

Request combining

Asynchronous work requests

Non-work-conserving nested loops

Results

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Nested loops

• Abundant parallelism, why use nesting?

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Nested loops

• Abundant parallelism, why use nesting?

• Contention between iterations of an outer loop

• E.g., betweenness-centrality:

– Iterate over vertices

– BFS traversal from each vertex (plus additional work)

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Nested loops

• Abundant parallelism, why use nesting?

• Contention between iterations of an outer loop

• E.g., betweenness-centrality:

– Iterate over vertices

– BFS traversal from each vertex (plus additional work)

Better cache locality within each traversal
than between (unrelated) traversals

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Nested loops

• Abundant parallelism, why use nesting?

• Contention between iterations of an outer loop

• E.g., betweenness-centrality:

– Iterate over vertices

– BFS traversal from each vertex (plus additional work)

Better cache locality within each traversal
than between (unrelated) traversals

Run at most one of
these per L2 D$

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Nested loops

• Number loops “inside out”

– Level 0 => innermost

– Level 1 => may contain a level-0 loop

• Each thread also has a level
– It will execute iterations <= its own level

– Level 0 thread: only executes inner-most loop iterations

– …

Controlling thread -> loop allocation

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Nested loops

1

2 3 4 6 7 8

5

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Nested loops: non-nested level 0 – all threads participate

1

2 3 4 6 7 8

5

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Nested loops: outer (level 1) – just 1+5 participate

1

2 3 4 6 7 8

5

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Nested loops: inner (level 0) –help respective leaders

1

2 3 4 6 7 8

5

Overview

1

2

3

4

Request combining

Asynchronous work requests

Non-work-conserving nested loops

Results

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Microbenchmark results
SPARC T5-8, 1024 threads

Per-socket counters

Per-core counters
Per-thread
counters

Even work

(Approx
1k cycles)

 0

 100

 200

 300

 400

 500

 4 8 16 32 64 128 256 512 1024

N
o

rm
a

liz
e

d
 s

p
e

e
d

u
p

Batch size

Per-core + asynchronous combining (blue)
Per-core + synchronous combining (green)

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Microbenchmark results
SPARC T5-8, 1024 threads Per-core + asynchronous combining (blue)

Per-core + synchronous combining (green)

Per-socket counters

Per-core counters
Per-thread
counters

Even work

(Approx
1k cycles)

 0

 100

 200

 300

 400

 500

 4 8 16 32 64 128 256 512 1024

N
o

rm
a

liz
e

d
 s

p
e

e
d

u
p

Batch size

 0

 100

 200

 300

 400

 500

 4 8 16 32 64 128 256 512 1024

N
o

rm
a

liz
e

d
 s

p
e

e
d

u
p

Batch size

Imbalanced work (1024:1)

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

PageRank – SNAP LiveJournal (4.8M vertices, 69M edges)

OpenMP Callisto-RTS

1024

512

256

128

64

32

1024 256 64 16 4

T
h

re
a

d
s

Batch size

1024

512

256

128

64

32

1024 256 64 16 4
T

h
re

a
d

s

Batch size

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
o

rm
a

liz
e

d
 e

x
e

c
u

tio
n

 tim
e

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

1024

512

256

128

64

32

1024 256 64 16 4
T

h
re

a
d

s

Batch size

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
o

rm
a

liz
e

d
 e

x
e

c
u

tio
n

 tim
e

PageRank – SNAP LiveJournal (4.8M vertices, 69M edges)

17% improvement in
best-case performance

OpenMP Callisto-RTS

1024

512

256

128

64

32

1024 256 64 16 4

T
h

re
a

d
s

Batch size

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

1024

512

256

128

64

32

1024 256 64 16 4
T

h
re

a
d

s

Batch size

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
o

rm
a

liz
e

d
 e

x
e

c
u

tio
n

 tim
e

PageRank – SNAP LiveJournal (4.8M vertices, 69M edges)

OpenMP Callisto-RTS

1024

512

256

128

64

32

1024 256 64 16 4

T
h

re
a

d
s

Batch size

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Betweenness-centrality
SNAP Slashdot data set (82.1K nodes, 948K edges), T5-8

 0

 20

 40

 60

 80

 100

 120

 32 64 128 256 512 1024

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Threads

No nesting

4 cores

2 cores

1 core

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Comparison with Galois
SNAP Twitter data set

Xeon X4-2 SPARC T5-8

 0

 2

 4

 6

 8

 10

 12

 1 2 4 8 16 32

S
p
e
e
d
u
p
 /
 s

e
q
u

e
n
ti
a
l

Threads

Callisto-RTS

Galois

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1 4 16 64 256 1024

S
p

e
e

d
u

p
 /
 s

e
q

u
e

n
ti
a

l
Threads

Callisto-RTS

Per-socket

Galois

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Comparison with Galois
SNAP LiveJournal data set

Xeon X4-2 SPARC T5-8

 0

 2

 4

 6

 8

 10

 12

 1 2 4 8 16 32

S
p
e
e
d
u
p
 /
 s

e
q
u

e
n
ti
a
l

Threads

Callisto-RTS

Galois

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 4 16 64 256 1024

S
p

e
e

d
u

p
 /
 s

e
q

u
e

n
ti
a

l
Threads

Callisto-RTS

Per-socket

Galois

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Future work

• Continuing development of the programming model

• Control over data placement as well as threads

– Initial examples from graph workloads generally have random accesses: spread data
and threads widely in the machine

– (See “Shoal”, USENIX ATC 2015)

• Interactions between multiple parallel workloads

– OS/runtime system interaction (ref our prior work at EuroSys 2014)

– Placement in the machine

– Control over degree of parallelism

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

