

Hypervisor memory introspection at the next level User-mode introspection and protection of live VMs

Senior Introspection Research Lead, Bitdefender

2015 USENIX Annual Technical Conference

Santa Clara, 8-10 July, 2015

Security issues we are facing today

- Advanced malware types
 - o Rootkits
 - o Kernel exploits
 - o Zero-days
- APTs, botnets, cyber-espionage etc. heavily rely on those...
 ○ CVE-2012-0158 → APT28
 - o CVE-2013-1347 → Energetic Bear

0 ...

Windows* Kernel Vulnerabilities

source: based on nvd.nist.gov

source: based on nvd.nist.gov

The lack-of-isolation problem

The lack-of-isolation problem

Solving the lack-of-isolation problem

Solving the lack-of-isolation problem

What is memory introspection?

provide security from outside the guest OS

- o not relying on guest OS can be compromised by advanced threats
 o relying on hardware accelerated virtualization (Intel* VT-x, EPT, ...)
- analyze raw memory image of guest OS and applications
 hook / mark 4K pages as non-execute or non-writable
- audit access of those areas by the code running in VM

o write attempts, execute attempts

o allow or deny attempts – decision provided by security logic

HVMI's key challenges

- bridge the semantic gap correlate raw 4K physical memory pages with meaningful OS data structures and operations
 - o what **objects** are inside a guest VM?
 - o what operations are being performed inside a guest VM?
- ensure acceptable / low performance overhead
 - o forward lots of mem-event notifications with low overhead to engine
 - o intercept only meaningful events
 - o handle events quickly (analysis, re-execution / emulation, ...)

User mode memory introspection

monitor user applications (such as web-browsers, Microsoft*

Office, Adobe* Reader, ...) for

o detection of code injection

o detection of function detouring

- \circ enforcement of generic Write-XOR-eXecute (W \oplus X) policy
- injection of remediation tools into the guest runtime on-thefly (no help from 'within' guest needed)

How can UM HVMI improve security?

. . .

How can UM HVMI improve security?

USER MODE HVMI

UM HVMI is STRONGLY ISOLATED (enforced by hardware) and provides GENERIC detection mechanisms

	Dedicated VM (asynchronous image, on premise, in-lab,)	Live VM Introspection	Mitigation approaches
Mem-event delivery time	not an issue	significant impact	 Intel* Broadwell ~400 ticks solely for the CPU round-trip #VE avoid VMexits

	Dedicated VM (asynchronous image, on premise, in-lab,)	Live VM Introspection	Mitigation approaches
Mem-event delivery time	not an issue	significant impact	 Intel* Broadwell ~400 ticks solely for the CPU round-trip #VE avoid VMexits
Overhead due to coarse grained 4K memory interception / filtering (unwanted mem-events)	usually not an issue	very significant impact	 today N/A could be solved by future CPUs???

	Dedicated VM (asynchronous image, on premise, in-lab, …)		Mitigation approaches
Mem-event delivery time	not an issue	significant impact	 Intel* Broadwell ~400 ticks solely for the CPU round-trip #VE avoid VMexits
Overhead due to coarse grained 4K memory interception / filtering (unwanted mem-events)	usually not an issue	very significant impact	 today N/A could be solved by future CPUs???
Event processing time (decoding, security decision logic, emulation…)	can afford lengthy processing	very limited time	good logic, caching

	Dedicated VM (asynchronous image, on premise, in-lab,)		Mitigation approaches	
Mem-event delivery time	not an issue	significant impact	 Intel* Broadwell ~400 ticks solely for the CPU round-trip #VE avoid VMexits 	
Overhead due to coarse grained 4K memory interception / filtering (unwanted mem-events)	usually not an issue significant impact		 today N/A could be solved by future CPUs??? 	
Event processing time (decoding, security decision logic, emulation)	can afford lengthy processing	very limited time	good logic, caching	
Availability of 3 rd party analysis tools, external info and scripting	yes, many of them (PDB metadata, scripting, Volatility,)	no, can't afford time overhead	N/A	

	Kernel Mode	User Mode	Mitigation
	introspection	introspection	approaches
Overcoming the semantic gap	challenging	more challenging (shared memory, multiple VA spaces,)	N/A

	Kernel Mode introspection	User Mode introspection	Mitigation approaches
Overcoming the semantic gap	challenging	more challenging (shared memory, multiple VA spaces,)	N/A
Page protection lifetime	mostly static	highly dynamic (follows process lifetime)	detailed page table monitoring

	Kernel Mode introspection	User Mode Mitigation introspection approaches	
Overcoming the semantic gap	challenging	more challenging (shared memory, multiple VA spaces,)	N/A
Page protection lifetime	mostly static	highly dynamic (follows process lifetime)	detailed page table monitoring
Accessing swapped out pages	rarely an issue	significant / constant issue	#PF injection

	Kernel Mode introspection	User Mode introspection	Mitigation approaches
Overcoming the semantic gap	challenging	more challenging (shared memory, multiple VA spaces,)	N/A
Page protection lifetime	mostly static	highly dynamic (follows process lifetime)	detailed page table monitoring
Accessing swapped out pages	rarely an issue	significant / constant issue	#PF injection
CPU page walker A/D bit updates impact on guest page monitoring	not an issue / small impact	significant issue for memory intensive workloads	 today N/A could be solved by future CPUs ???

Limiting factors VMexits due to CPU page walker A/D bit update

VMexits due to EPT violation induced by CPU page-walker updates of guest A/D bits n

source: Bitdefender analysis

Typical office applications workload

(e.g. web browsing, document editing, ...)

Limiting factors VMexits due to CPU page walker A/D bit update

source: Bitdefender analysis

Typical office applications workload

(e.g. web browsing, document editing, ...)

Heavy memory workload (e.g. intensive allocations, many process starts, ...)

Limiting factors Instruction decoding – VMexit frequency

Instruction	Average %	Win 8.1 x64	Win 8 x86	Win 7 x86	Win 7 SP1 x64
MOV	94.42	746583	902462	401610	705405
CMPXCHG	1.57	42499	1558	3631	156
XADD	0.98	92	6250	14320	378
BTR	0.56	431	1640	8978	219
XOR	0.34	5590	2	118	4523
СМРХСН8В	0.26	51	878	2574	2597
INC	0.15	135	718	2027	373
BTS	0.11	1051	11	1273	41
DEC	0.09	433	1648	515	2
MOVZX	0.06	575	36	18	1221
All Other	1.47	4185	13364	15320	3609
Total exits for	each OS	801625	928567	450384	718524

Introspection use-case scenarios

Introspection use-case scenarios

Introspection use-case scenarios

Final thoughts

- HVMI can be deployed today on a wide range of platforms
 - cloud VMs, servers, VDI, endpoint clients (PCs, laptops, tablets)
 - Windows / Linux, 32 / 64 bit, x86 / ARM
 - kernel / user mode
 - in-hypervisor, Intel* #VE based, nested deployments
- user mode introspection is very effective against a wide number of attacks, providing generic and strongly isolated security
- user mode HVMI is good for typical office workloads, but there is room for improvement for heavy memory workload scenarios
 - this is an open research area, ideas are welcome ③

Q&A

Thank you!

VMworld 2015 USA, August 30 – September 3, San Francisco

• live demos with Bitdefender HVMI on VMware* vSphere

Intel Developer Forum 2015 USA, August 18-20 San Francisco

- technical session talk on HVMI
- live demos with Bitdefender HVMI on Citrix* XenServer

* Names and brands might be claimed as the property of their respective owners.