
Utilizing the IOMMU Scalably

USENIX Annual Technical Conference 2015

Omer Peleg, Adam Morrison, Benjamin Serebrin* and Dan Tsafrir

* Google



In This Talk

• IOMMU overview

•Main challenges to OSes

•Current solutions – they don’t scale

•Exploring scalable solutions



What is an IOMMU?

MMU

Process

Virtual Address

IOMMU

Device

I/O Virtual Address

System Memory

Physical Address

• Similar to MMU

•Translates DMA accesses



How Does it Work?
Device 04:00.1

Wants to write 0xDA7A
To (virtual) address 0x1234568

…
…

04:00.1

04:00.0

04:00.2

00:00.0

FF:1F.7

FF:1F.6

…
…

0x00000000

00:00.1 0x00200000

0x3FC00000

0x3FE00000

0x01000000

0x01200000

0x01400000

…
0xABCDE000

…

0x01200000

0x01201000

0x013FE000

0x013FF000

0x01233000

0x01234000

0x01235000

IOMMU
(Intel VT-d)

Device 04:00.1
Wants to write 0xDA7A
To address 0xABCDE568



What is the IOMMU for?

•Protecting the system from untrusted elements
•MMU protects memory from processes
• IOMMU protects memory from devices



What is the IOMMU for?

– July 29th 2012 (Computerworld)

– February 16th 2015 (The Verge)

•Protecting the system from untrusted elements



Where MMU and IOMMU differ
MMU (process)

malloc/free

mmap/munmap

…
…

0x00000000

0x00200000

0x3FC00000

0x01000000

0x01200000

0x01400000

…

0xABCDE000

…

0x01200000

0x01201000

0x013FE000

0x013FF000

0x01233000

0x01234000

0x01235000

0x3FE00000

IOMMU (device driver)

dma_map/unmap
…

…

0x00000000

0x00200000

0x3FC00000

0x01000000

0x01200000

0x01400000

…

0xABCDE000

…

0x01200000

0x01201000

0x013FE000

0x013FF000

0x01233000

0x01234000

0x01235000

0x3FE00000



IOMMU Limits Performance?
Aggregate throughput – 270 Netperf TCP Request/Response



IOMMU Limits Performance?
Turning IOMMU on in Linux is prohibitive



IOMMU Limits Performance?
Meltdown is not due to hardware, though



IOMMU – State of the Art

•EiovaR – Efficient IOVA allocatoR

•Malka et al., FAST ‘15

•Baseline for our talk

•Optimized IOMMU single core performance



IOMMU – State of the Art



Our Contribution

• Identify scalability bottlenecks
• Linux, FreeBSD, OpenSolaris, Mac OS X
•All have:
•Globally locked IOVA allocation
•Globally locked Invalidations

•Design and compare scalable solutions



EiovaR – Scalability (@16 Cores)

Invalidation lock

IOVA allocation lock



• IOMMU caches translations

• Invalidations needed
• Before address reuse
• For security

• Strict (invalidation on unmap) – too costly
• Contention on invalidation interface

MMU

Process

IOMMU

Device

System Memory

TLB IOTLB

Invalidation Complicates Things



Linux – Strict Invalidation Cost



Linux – Deferred Invalidation

• Linux’s default policy

•Batch (up to 250) invalidations
• Invalidate IOTLB globally
•Free batched IOVAs only after invalidation

•Creates a vulnerability window
•Not a correctness problem, though



Deferred Invalidation - The Problem

• Linux saves IOVAs it will free upon invalidation

• In a globally locked data structure



IOVA List

Deferred Invalidation - The Problem

• Linux saves IOVAs it will free upon invalidation

• In a globally locked data structure

CPU #0 CPU #1 CPU #2 …

IOVA0 IOVA1 IOVA2



IOVA List

Deferred Invalidation - The Problem

• Linux saves IOVAs it will free upon invalidation

• In a globally locked data structure

CPU #0 CPU #1 CPU #2 …

IOVA2

IOVA0

IOVA1



IOVA List

Deferred Invalidation - The Problem

• Linux saves IOVAs it will free upon invalidation

• In a globally locked data structure

CPU #0 CPU #1 CPU #2 …

IOVA1

IOVA0

IOVA2



IOVA List

Deferred Invalidation - The Problem

• Linux saves IOVAs it will free upon invalidation

• In a globally locked data structure

CPU #0 CPU #1 CPU #2 …

IOVA1

IOVA0

IOVA2

Invalidate
IOTLB



IOVA List

Deferred Invalidation - The Problem

• Linux saves IOVAs it will free upon invalidation

• In a globally locked data structure

CPU #0 CPU #1 CPU #2 …

IOVA1

IOVA0

IOVA2



Deferred Invalidation - The Problem

• Linux saves IOVAs it will free upon invalidation

• In a globally locked data structure
•Contention



Solving Deferred Invalidation

• But prompt freeing of IOVAs is not significant!

•Use per-core deferred invalidation

• Access to hardware still 250:1 vs strict

• Correctness: maintained



EiovaR – Scalability (@16 Cores)

Invalidation lock

IOVA allocation lock



Linux – IOVA Allocation

•Globally locked

• Finds first fit from top of virtual space
•EiovaR does that in constant time

•Packs allocations in a bounded area



Linux – Page Table Management

•Page table lock = BAD!

• Linux manages tables in parallel with no lock

•The price – page tables are never freed

•Good thing IOVA range is bounded



Solving IOVA Assignment

• IOVA assignment doesn’t scale

•We explore three different solutions



Solving IOVA Assignment #1 – Dynamic 1:1

• Do we even need an allocator?
• Page being mapped already has an address

•Use physical address as virtual



Solving IOVA Assignment #1 – Dynamic 1:1

•Use physical address as virtual

• Reference count

Map(X) Map(X) Unmap(X) Unmap(X)

Device can access X



Solving IOVA Assignment #1 – Dynamic 1:1

•Use physical address as virtual

• Reference count
•Use spare bits in page table entry



•Use physical address as virtual

• Reference count

• Keep permissions accurate

Solving IOVA Assignment #1 – Dynamic 1:1

Map(X,R) Map(X,W) Unmap(X,W)

Device has Read access Device has Write access



Solving IOVA Assignment #1 – Dynamic 1:1

•Use physical address as virtual

• Reference count

• Keep permissions accurate
• Separate virtual space by access rights



What is allocating an IOVA?

• Allocate range of virtual page numbers

• Allocating a unique range of integers

• Regular memory allocators allocate a range of bytes
•Which have a range of unique addresses
•Use the address range as an unique integer range
• Disregard the memory



Solving IOVA Assignment #2 – IOVA-kmalloc

•Use existing, optimized, general purpose allocator

• For a k page range: kmalloc(k)
•Use address as virtual page number
• Completely disregard the actual memory



Solving IOVA Assignment #3 – Magazines

• Build on top of the Linux allocator

• Save freed IOVAs for reallocation
•Use local caches to avoid contention

•Magazines (Bonwick 01)

• Still packs allocations



Evaluation



Our Setup

• 2x Dell PowerEdge R430, each 
• 16 Haswell E5 cores @2.4GHz
• 10 Gigabit Ethernet NIC

• Server
• Modified Linux 3.17.2

• Client
• IOMMU turned off
• Stock Linux 3.13.0-45 (Ubuntu)



High Throughput TCP Request-Response



Memcached



Latency - Multiple Dedicated Cores

1.3x

3.2x



Page Tables



Page Tables (with iova-kmalloc)



Page Tables

• Linux never frees page tables

•Need IOVA allocator that accounts for that
•Can take notes from general purpose allocators



Design Space - Summary

Time to 
Implement

Control of
Page Tables?

Scale?

Dynamic 1:1 Weeks No*


IOVA-kmalloc Hours No 

Magazines Days Yes 



Conclusions

•MMU and IOMMU are different

• First IOMMU management schemes to scale

• Future work
• Strict invalidation

•Better I/O page table management

• Subpage protection

•Questions?


