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Two things you may dislike most
about your smartphone...

Battery drain Low responsiveness



But do you know...

What

Is an app doing
Behind you?!

Twitter’s fsync() system calls
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Storage impairs both energy efficiency and
responsiveness!




Traditional Design
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Traditional Design

Programmers’ dilemma
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Solution Overview
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Flash storage vs. DRAM residence:

Can we find a sweet spot between
the two?
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Insight |

Storing app data on smartphone memory is not
as risky as it sounds.

A smartphone is self-contained,i.e., battery-
backed.

e System-wise crash is rare. Our survey: only 6%
users experienced more than once per month.

* QOur case studies: 54 out of top 62 free apps in
Google Play are vulnerable to local data loss.
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System Design: Mechanism

Versioned Cache Transaction (VCT)

* Introducing transactions to OS page cache

* Basic life cycle:
— Open a VCT for certain files
— Perform Copy-on-Write for dirty pages
— Coalesce writes on these new versions of pages
— Close a VCT according to our policy

* VCTs of different apps are independent, for
optimization purpose.



Insight Il

VMemory capacity on smartphones is ample
enough for app data storage.
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System Design: Mechanism

MobiFS components

File inode

Open Section
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Insight Il

Reducing the amount of data flushed to flash is
a key to save app energy.

* Our measurement: the overall read energy is
only 6.3% of write energy

* The amount of data to flush, rather than the
number of batches, is the dominant factor.
Our measurement: writing 40 MB data in
batches ranging from 4 to 40 MB results in a
net energy consumption difference within
1.5%.
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Insight V
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App 1/0O patterns suggest adaptive policies to
balance the staleness-energy tradeoff, which can
be achieved in a quantitative way.
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System Design: Policy

Tradeoff Point Location

* New metric for energy efficiency: the e curve
= coalesced data size / staleness

* Principle: reduce data staleness unless the
otherwise increases energy efficiency.

* Peak detection algorithm:
— Detection window

— Incremental linear regression
— Threshold for gradient (not necessarily 0)

13



System Design: Policy

* Tradeoffs between three objectives: data
staleness, energy efficiency and app
responsiveness.

* The tradeoff point location algorithm only

closes a transaction, making it ready to be
checkpointed. l

Responsiveness-oriented policy: when to ckpt.
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Insight IV

Relaxing the timing of flushes is a key to app
responsiveness.

* Prior work has shown the implication of fsync()
Jeong et al. ATC’13, Lee et al. EMSOFT’12] and
oackground flushing [Kim et al. FAST’12, Nguyen et al.
UbiComp’14].

 What is the right timing for flushing?
Our measurement: when the device is idle.
Standby is not good timing — leading to 129%
extra energy consumption
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System Design: Policy

Interval Prediction
e Rationale: predict according to history
e Last min policy
— Pessimistic in prediction, with least conflicts

— Limiting flush data size

* Last average policy
— Incurring more conflicts

— Enabling larger flush data size
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System Design: Policy

Interval Prediction
e To learn two modes in user interaction

u <1 | update A4,

|
update A,

T | do checkpt.

event u - an user operation
event T - when m X¢, passes; event 0 - when ¢, passes
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Implementation and Evaluation

A working prototype
* Android 4.1 (Linux 3.0.31)

* |Integrated with either Ext4 (journaling data)
or Btrfs (COW)

Experiments
* Traces from real users
 Benchmarks + real apps (monkeyrunner)

e Use real devices: Samsung Galaxy Premier
19260 (dual-core 1.5 GHz CPU, 1 GB RAM);
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Evaluation: Energy
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With ten most popular apps (by geo. mean):

* MobiFS reduces the amount of flush data by 53.0%
compared to Ext4.
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Evaluation: Energy

* Three representatives of real apps: Browser
(low freq. of fsync), Facebook (middle freq. of
fsync), Twitter (high freq. of fsync).
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* On average, device energy consumption is
reduced by 35.8% compared to Ext4.
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Evaluation: Responsiveness

1000 _
. [ - 1 16384
2 I 1 _
o) 100 ¢ 1 4096
= : 5 1 1024
= [ - - n
o 10 E 1 256 0
< : 5 - O
g’ 1 64
= 1 16
— ; _ !

0.1 1
Seq.: Write Read Rand: Write Read
Ext4 mmmmm MobiFS Ext4 mmm= MobiFS

* On average, 18.8 X filesystem 1/0 throughput.
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Evaluation: Responsiveness

16384 |
4096 |
1024 |

256 |
64 |
16 |

Trans. per Sec. (TPS)

Insert Update Delete

Ext4 mmmm MobiFS s

* On average, 11.2 X database transaction
throughput.



Evaluation: Responsiveness
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* On average, user operation delay is reduced
by 51.6%.



Related Work

* Decouple of durability and consistency

xsyncfs [ospros], OptFS [sosp’13], Blizzard [Nspri14), TxCache
[ospr1o], etc.: different domains; static durability
guarantee (e.g., up to X seconds of data loss).

MobiFS: transactions in OS page cache;
adaptive tradeoff for different mobile apps/users.

* Energy optimizations

SmartStorage [uUbicomp’13]: read/write ratio; 6% ~ 9%
slowdown for energy saving

Coop-I/0 [ospro2): deferrable requests

MobiFS: changed design rationale; best performance
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Conclusion

* We propose a memory-centric storage, based on our
new insights in the mobile system design.

 We trade off data durability for energy efficiency and
app responsiveness, in a quantitative manner.

* We introduce transactions to the OS page cache and
implement VobiFS, to support the tradeoff
transparently.

 We achieve: (1) over one order of magnitude
improvement in IO performance; (2) over 1/2 and
1/3 reduction in energy consumption and operation
delay, respectively.
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Thank youl!

jinglei@ren.systems
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