Memory-Centric Data Storage for
Mobile Systems

Jinglei Ren, Mike Liang, Yongwei Wu,
Thomas Moscibroda

Sy . f ,
F5 =8 ."'0. N }/é Microsoft’
0Z% Fed
%/ Tsinghua Universi
‘0. 7 eSS O ...' T gh U ty
. “‘\\\\\\“‘..

Two things you may dislike most
about your smartphone...

Battery drain Low responsiveness

But do you know...

What

Is an app doing
Behind you?!

Twitter’s fsync() system calls

FHH—HI éég
0 5 10 (sec.))IT:M

Storage impairs both energy efficiency and
responsiveness!

Traditional Design

—

Page Cache

(memory)

flush/5s f8ync ()

Traditional Design

Programmers’ dilemma

11 malloc()
S o ocm(a)lloc ()malriigclz.)oc ()
The fsyne () function malloc() 0 mal loc ((;
shall not return until the malloc () malloc 2
system has completed malloc()
that action or until an mallc ¥
ervor Ls detected mal ‘
. ‘
Old-fashioned design... —I-

Solution Overview

?&U#‘ Q

Page Store

11 1

\llSSl() |-
COMPLE

Flash storage vs. DRAM residence:

Can we find a sweet spot between
the two?

| I

chec

oint

(memory)

Superhlock

Directory

TN TN
L \.\\\\
D
BT

= [(flash)

Insight |

Storing app data on smartphone memory is not
as risky as it sounds.

A smartphone is self-contained,i.e., battery-
backed.

e System-wise crash is rare. Our survey: only 6%
users experienced more than once per month.

* QOur case studies: 54 out of top 62 free apps in
Google Play are vulnerable to local data loss.

@ About Pinterest

Me

Privacy Pollcy SM Buddy, | am skiving off USENIX ATC.
Don’t tell my boss!

What information do

we CO"eCt? l;e |f' E Type instant message here ';f ‘

...This can include your
name, profile photo,

Pins, comments, likes, IS Buddy, | am skiving off
ema|| address) and j m USENIX ATC. Don’t tell
. i my boss!

any other information
you provide us. 54|
Type a message her

System Design: Mechanism

Versioned Cache Transaction (VCT)

* Introducing transactions to OS page cache

* Basic life cycle:
— Open a VCT for certain files
— Perform Copy-on-Write for dirty pages
— Coalesce writes on these new versions of pages
— Close a VCT according to our policy

* VCTs of different apps are independent, for
optimization purpose.

Insight Il

VMemory capacity on smartphones is ample
enough for app data storage.

8192
4096
2048
1024
512
256

DRAM Capacity (MB)

64
32
16

L OneDrive

Samsung F700 =

Nokia N70s
- ® Samsung i530

® Samsung i600

Samsung Galaxy S6 =
Samsung Note 3

Samsung Note 2 =

Samsung 83 m
HTC Sensation” m

HTC Desire B Nexus One

- Samsung B7320 1 HTC Hero
HTC Dr
128 +

eam =
m Nokia N97

2004 2006

2008 2010 2012
Year

N
ay

Wmdows"IO

System Design: Mechanism

MobiFS components

File inode

Open Section

Closed | \ Log "/~ |} \ ~———"x°'-—""-- i
Section

Page reverse-mapping

]
|
l —_]
Appl [> > |
App 2
v | H | —» Reference
Transactions)| — — Das flos
---- External
Checkpointer component

10

Insight Il

Reducing the amount of data flushed to flash is
a key to save app energy.

* Our measurement: the overall read energy is
only 6.3% of write energy

* The amount of data to flush, rather than the
number of batches, is the dominant factor.
Our measurement: writing 40 MB data in
batches ranging from 4 to 40 MB results in a
net energy consumption difference within
1.5%.

11

Insight V

100 .
90 :
x
> 80 :
£
g 70| _
K Facebook: 0-11.4MB
60 | Twitter: 0-156.2MB
GoogleMaps: 0-175.8MB ——
50 . | Browser: 0-9.5MB ——

0 20 40 60 80 100
Staleness (Unified)

App 1/0O patterns suggest adaptive policies to
balance the staleness-energy tradeoff, which can
be achieved in a quantitative way.

12

System Design: Policy

Tradeoff Point Location

* New metric for energy efficiency: the e curve
= coalesced data size / staleness

* Principle: reduce data staleness unless the
otherwise increases energy efficiency.

* Peak detection algorithm:
— Detection window

— Incremental linear regression
— Threshold for gradient (not necessarily 0)

13

System Design: Policy

* Tradeoffs between three objectives: data
staleness, energy efficiency and app
responsiveness.

* The tradeoff point location algorithm only

closes a transaction, making it ready to be
checkpointed. l

Responsiveness-oriented policy: when to ckpt.

14

Insight IV

Relaxing the timing of flushes is a key to app
responsiveness.

* Prior work has shown the implication of fsync()
Jeong et al. ATC’13, Lee et al. EMSOFT’12] and
oackground flushing [Kim et al. FAST’12, Nguyen et al.
UbiComp’14].

 What is the right timing for flushing?
Our measurement: when the device is idle.
Standby is not good timing — leading to 129%
extra energy consumption

15

System Design: Policy

Interval Prediction
e Rationale: predict according to history
e Last min policy
— Pessimistic in prediction, with least conflicts

— Limiting flush data size

* Last average policy
— Incurring more conflicts

— Enabling larger flush data size

16

System Design: Policy

Interval Prediction
e To learn two modes in user interaction

u <1 | update A4,

|
update A,

T | do checkpt.

event u - an user operation
event T - when m X¢, passes; event 0 - when ¢, passes

17

Implementation and Evaluation

A working prototype
* Android 4.1 (Linux 3.0.31)

* |Integrated with either Ext4 (journaling data)
or Btrfs (COW)

Experiments
* Traces from real users
 Benchmarks + real apps (monkeyrunner)

e Use real devices: Samsung Galaxy Premier
19260 (dual-core 1.5 GHz CPU, 1 GB RAM);

18

Evaluation: Energy

100 ‘ ‘ ‘ ‘ ‘ 100

80 | — | 80
L
> 60 | 1 60
=
g 40 { 40}
n Ideal Ideal

20 | Ext4 1 20} Ext4

0 | | MobiFS —— 0 | | | MobiFS ——

0 1 2 3 4 5 6 O 5 10 15 20 25 30 35 40
Facebook: Staleness (MB) Twitter: Staleness (MB)

With ten most popular apps (by geo. mean):

* MobiFS reduces the amount of flush data by 53.0%
compared to Ext4.

19

Evaluation: Energy

* Three representatives of real apps: Browser
(low freq. of fsync), Facebook (middle freq. of
fsync), Twitter (high freq. of fsync).

100
80
60 r
40 r
20 r

0

Energy (J)

Browser Facebook Twitter

Ext4 mmss MobiFS
* On average, device energy consumption is
reduced by 35.8% compared to Ext4.

20

Evaluation: Responsiveness

1000 _
. [- 1 16384
2 I 1 _
o) 100 ¢ 1 4096
= : 5 1 1024
= [- - n
o 10 E 1 256 0
< : 5 - O
g’ 1 64
= 1 16
— ; _ !

0.1 1
Seq.: Write Read Rand: Write Read
Ext4 mmmmm MobiFS Ext4 mmm= MobiFS

* On average, 18.8 X filesystem 1/0 throughput.

21

Evaluation: Responsiveness

16384 |
4096 |
1024 |

256 |
64 |
16 |

Trans. per Sec. (TPS)

Insert Update Delete

Ext4 mmmm MobiFS s

* On average, 11.2 X database transaction
throughput.

Evaluation: Responsiveness

50 | |

40
30
20 r
10 r
0

Time ()

Browser Facebook Twitter

Ext4 mmmm MobiFS s

* On average, user operation delay is reduced
by 51.6%.

Related Work

* Decouple of durability and consistency

xsyncfs [ospros], OptFS [sosp’13], Blizzard [Nspri14), TxCache
[ospr1o], etc.: different domains; static durability
guarantee (e.g., up to X seconds of data loss).

MobiFS: transactions in OS page cache;
adaptive tradeoff for different mobile apps/users.

* Energy optimizations

SmartStorage [uUbicomp’13]: read/write ratio; 6% ~ 9%
slowdown for energy saving

Coop-I/0 [ospro2): deferrable requests

MobiFS: changed design rationale; best performance
24

Conclusion

* We propose a memory-centric storage, based on our
new insights in the mobile system design.

 We trade off data durability for energy efficiency and
app responsiveness, in a quantitative manner.

* We introduce transactions to the OS page cache and
implement VobiFS, to support the tradeoff
transparently.

 We achieve: (1) over one order of magnitude
improvement in IO performance; (2) over 1/2 and
1/3 reduction in energy consumption and operation
delay, respectively.

25

Thank youl!

jinglei@ren.systems

26

