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Two things you may dislike most

about your smartphone…

Battery drain Low responsiveness
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But do you know…
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What
Is
Behind you?!

an app doing

Twitter’s fsync() system calls

Storage impairs both energy efficiency and
responsiveness!

(sec.)



Traditional Design
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Traditional Design

Programmers’ dilemma
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POSIX
The fsync() function 
shall not return until the 
system has completed 
that action or until an 
error is detected.

Old-fashioned design…
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Solution Overview
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checkpoint 

Flash storage vs. DRAM residence:
Can we find a sweet spot between 
the two?



Insight I

Storing app data on smartphone memory is not 
as risky as it sounds. 

• A smartphone is self-contained,i.e., battery-
backed.

• System-wise crash is rare. Our survey: only 6%
users experienced more than once per month.

• Our case studies: 54 out of top 62 free apps in
Google Play are vulnerable to local data loss.
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What information do 
we collect?
…This can include your 
name, profile photo, 
Pins, comments, likes, 
email address…, and 
any other information
you provide us.

Buddy, I am skiving off USENIX ATC. 
Don’t tell my boss!

Buddy, I am skiving off 
USENIX ATC. Don’t tell 
my boss!



System Design: Mechanism

Versioned Cache Transaction (VCT)

• Introducing transactions to OS page cache

• Basic life cycle:

– Open a VCT for certain files

– Perform Copy-on-Write for dirty pages

– Coalesce writes on these new versions of pages

– Close a VCT according to our policy

• VCTs of different apps are independent, for
optimization purpose.
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Insight II

Memory capacity on smartphones is ample 
enough for app data storage. 
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System Design: Mechanism

MobiFS components
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Insight III

Reducing the amount of data flushed to flash is 
a key to save app energy.

• Our measurement: the overall read energy is 
only 6.3% of write energy

• The amount of data to flush, rather than the 
number of batches, is the dominant factor.
Our measurement: writing 40 MB data in 
batches ranging from 4 to 40 MB results in a 
net energy consumption difference within 
1.5%. 
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Insight V

App I/O patterns suggest adaptive policies to 
balance the staleness-energy tradeoff, which can 
be achieved in a quantitative way. 
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System Design: Policy

Tradeoff Point Location

• New metric for energy efficiency: the e curve
e = coalesced data size / staleness

• Principle: reduce data staleness unless the 
otherwise increases energy efficiency.

• Peak detection algorithm:

– Detection window

– Incremental linear regression

– Threshold for gradient (not necessarily 0)
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System Design: Policy

• Tradeoffs between three objectives: data 
staleness, energy efficiency and app 
responsiveness.

• The tradeoff point location algorithm only 
closes a transaction, making it ready to be 
checkpointed.

Responsiveness-oriented policy: when to ckpt.
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Insight IV

Relaxing the timing of flushes is a key to app 
responsiveness. 

• Prior work has shown the implication of fsync()
[Jeong et al. ATC’13, Lee et al. EMSOFT’12] and
background flushing [Kim et al. FAST’12, Nguyen et al.

UbiComp’14].

• What is the right timing for flushing?
Our measurement: when the device is idle.
Standby is not good timing – leading to 129%
extra energy consumption
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System Design: Policy

Interval Prediction

• Rationale: predict according to history

• Last min policy

– Pessimistic in prediction, with least conflicts

– Limiting flush data size

• Last average policy

– Incurring more conflicts

– Enabling larger flush data size
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System Design: Policy

Interval Prediction

• To learn two modes in user interaction
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Implementation and Evaluation

A working prototype

• Android 4.1 (Linux 3.0.31) 

• Integrated with either Ext4 (journaling data)
or Btrfs (COW)

Experiments

• Traces from real users

• Benchmarks + real apps (monkeyrunner)

• Use real devices: Samsung Galaxy Premier 
I9260 (dual-core 1.5 GHz CPU, 1 GB RAM);
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Evaluation: Energy

With ten most popular apps (by geo. mean):

• MobiFS reduces the amount of flush data by 53.0%
compared to Ext4.
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Evaluation: Energy

• Three representatives of real apps: Browser
(low freq. of fsync), Facebook (middle freq. of
fsync), Twitter (high freq. of fsync).

20

• On average, device energy consumption is
reduced by 35.8% compared to Ext4.
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Evaluation: Responsiveness
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Evaluation: Responsiveness
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• On average, 11.2× database transaction
throughput.
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Evaluation: Responsiveness
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• On average, user operation delay is reduced
by 51.6%.
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Related Work

• Decouple of durability and consistency

xsyncfs [OSDI’06], OptFS [SOSP’13], Blizzard [NSDI’14], TxCache
[OSDI’10], etc.: different domains; static durability 
guarantee (e.g., up to x seconds of data loss).

MobiFS: transactions in OS page cache;
adaptive tradeoff for different mobile apps/users.

• Energy optimizations

SmartStorage [UbiComp’13]: read/write ratio; 6% ~ 9%
slowdown for energy saving

Coop-I/O [OSDI’02]: deferrable requests

MobiFS: changed design rationale; best performance
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Conclusion

• We propose a memory-centric storage, based on our
new insights in the mobile system design.

• We trade off data durability for energy efficiency and
app responsiveness, in a quantitative manner.

• We introduce transactions to the OS page cache and
implement MobiFS, to support the tradeoff
transparently.

• We achieve: (1) over one order of magnitude
improvement in IO performance; (2) over 1/2 and
1/3 reduction in energy consumption and operation
delay, respectively.
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Thank you!

jinglei@ren.systems
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