
Memory-Centric Data Storage for
Mobile Systems

Jinglei Ren, Mike Liang, Yongwei Wu,
Thomas Moscibroda

Two things you may dislike most

about your smartphone…

Battery drain Low responsiveness
1

But do you know…

2

What
Is
Behind you?!

an app doing

Twitter’s fsync() system calls

Storage impairs both energy efficiency and
responsiveness!

(sec.)

Traditional Design

3

FS

DB Page Cache
(memory)

(flash)

flush/5s fsync()

Traditional Design

Programmers’ dilemma

4

POSIX
The fsync() function
shall not return until the
system has completed
that action or until an
error is detected.

Old-fashioned design…

malloc()

malloc()

malloc()malloc()

malloc()

malloc()

malloc()

malloc()

malloc()

malloc()

malloc()

malloc()
malloc()

malloc()

Solution Overview

5

FS

DB Page Store
(memory)

(flash)

checkpoint

Flash storage vs. DRAM residence:
Can we find a sweet spot between
the two?

Insight I

Storing app data on smartphone memory is not
as risky as it sounds.

• A smartphone is self-contained,i.e., battery-
backed.

• System-wise crash is rare. Our survey: only 6%
users experienced more than once per month.

• Our case studies: 54 out of top 62 free apps in
Google Play are vulnerable to local data loss.

6

Insight I

Storing app data on smartphone memory is not
as risky as it sounds.

• A smartphone is self-contained,i.e., battery-
backed.

• System-wise crash is rare. Our survey: only 6%
users experienced more than once per month.

• Our case studies: 54 out of top 62 free apps in
Google Play are vulnerable to local data loss.

7

What information do
we collect?
…This can include your
name, profile photo,
Pins, comments, likes,
email address…, and
any other information
you provide us.

Buddy, I am skiving off USENIX ATC.
Don’t tell my boss!

Buddy, I am skiving off
USENIX ATC. Don’t tell
my boss!

System Design: Mechanism

Versioned Cache Transaction (VCT)

• Introducing transactions to OS page cache

• Basic life cycle:

– Open a VCT for certain files

– Perform Copy-on-Write for dirty pages

– Coalesce writes on these new versions of pages

– Close a VCT according to our policy

• VCTs of different apps are independent, for
optimization purpose.

8

Insight II

Memory capacity on smartphones is ample
enough for app data storage.

 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

 8192

 2004 2006 2008 2010 2012 2014

D
R

A
M

 C
a

p
a

c
it
y
 (

M
B

)

Year

Nokia N70

Samsung i530

Samsung i600

Nokia N97

HTC Hero

Nexus One

Samsung Galaxy S6

Samsung F700

HTC Dream
Samsung B7320

HTC Desire
HTC Sensation

Samsung S3

Samsung Note 2
Samsung Note 3

9

System Design: Mechanism

MobiFS components

10

Insight III

Reducing the amount of data flushed to flash is
a key to save app energy.

• Our measurement: the overall read energy is
only 6.3% of write energy

• The amount of data to flush, rather than the
number of batches, is the dominant factor.
Our measurement: writing 40 MB data in
batches ranging from 4 to 40 MB results in a
net energy consumption difference within
1.5%.

11

Insight V

App I/O patterns suggest adaptive policies to
balance the staleness-energy tradeoff, which can
be achieved in a quantitative way.

12

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100

S
a

v
in

g
 %

Staleness (Unified)

Facebook: 0-11.4MB
Twitter: 0-156.2MB

GoogleMaps: 0-175.8MB
Browser: 0-9.5MB

System Design: Policy

Tradeoff Point Location

• New metric for energy efficiency: the e curve
e = coalesced data size / staleness

• Principle: reduce data staleness unless the
otherwise increases energy efficiency.

• Peak detection algorithm:

– Detection window

– Incremental linear regression

– Threshold for gradient (not necessarily 0)

13

System Design: Policy

• Tradeoffs between three objectives: data
staleness, energy efficiency and app
responsiveness.

• The tradeoff point location algorithm only
closes a transaction, making it ready to be
checkpointed.

Responsiveness-oriented policy: when to ckpt.

14

Insight IV

Relaxing the timing of flushes is a key to app
responsiveness.

• Prior work has shown the implication of fsync()
[Jeong et al. ATC’13, Lee et al. EMSOFT’12] and
background flushing [Kim et al. FAST’12, Nguyen et al.

UbiComp’14].

• What is the right timing for flushing?
Our measurement: when the device is idle.
Standby is not good timing – leading to 129%
extra energy consumption

15

System Design: Policy

Interval Prediction

• Rationale: predict according to history

• Last min policy

– Pessimistic in prediction, with least conflicts

– Limiting flush data size

• Last average policy

– Incurring more conflicts

– Enabling larger flush data size

16

System Design: Policy

Interval Prediction

• To learn two modes in user interaction

17

Implementation and Evaluation

A working prototype

• Android 4.1 (Linux 3.0.31)

• Integrated with either Ext4 (journaling data)
or Btrfs (COW)

Experiments

• Traces from real users

• Benchmarks + real apps (monkeyrunner)

• Use real devices: Samsung Galaxy Premier
I9260 (dual-core 1.5 GHz CPU, 1 GB RAM);

18

Evaluation: Energy

With ten most popular apps (by geo. mean):

• MobiFS reduces the amount of flush data by 53.0%
compared to Ext4.

19

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6

S
a

v
in

g
 %

Facebook: Staleness (MB)

Ideal
Ext4

MobiFS
 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

S
a

v
in

g
 %

Twitter: Staleness (MB)

Ideal
Ext4

MobiFS

Evaluation: Energy

• Three representatives of real apps: Browser
(low freq. of fsync), Facebook (middle freq. of
fsync), Twitter (high freq. of fsync).

20

• On average, device energy consumption is
reduced by 35.8% compared to Ext4.

 0

 20

 40

 60

 80

 100

Browser Facebook Twitter

E
n

e
rg

y
 (

J
)

Ext4 MobiFS

Evaluation: Responsiveness

21

 0.1

 1

 10

 100

 1000

Seq.: Write Read

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Ext4 MobiFS

• On average, 18.8× filesystem I/O throughput.

Rand: Write Read
 1

 4

 16

 64

 256

 1024

 4096

 16384

IO
P

S

Ext4 MobiFS

Evaluation: Responsiveness

22

• On average, 11.2× database transaction
throughput.

 1

 4

 16

 64

 256

 1024

 4096

 16384

Insert Update Delete

T
ra

n
s
.

p
e

r
S

e
c
.

(T
P

S
)

Ext4 MobiFS

Evaluation: Responsiveness

23

• On average, user operation delay is reduced
by 51.6%.

 0

 10

 20

 30

 40

 50

Browser Facebook Twitter

T
im

e
 (

s
)

Ext4 MobiFS

Related Work

• Decouple of durability and consistency

xsyncfs [OSDI’06], OptFS [SOSP’13], Blizzard [NSDI’14], TxCache
[OSDI’10], etc.: different domains; static durability
guarantee (e.g., up to x seconds of data loss).

MobiFS: transactions in OS page cache;
adaptive tradeoff for different mobile apps/users.

• Energy optimizations

SmartStorage [UbiComp’13]: read/write ratio; 6% ~ 9%
slowdown for energy saving

Coop-I/O [OSDI’02]: deferrable requests

MobiFS: changed design rationale; best performance
24

Conclusion

• We propose a memory-centric storage, based on our
new insights in the mobile system design.

• We trade off data durability for energy efficiency and
app responsiveness, in a quantitative manner.

• We introduce transactions to the OS page cache and
implement MobiFS, to support the tradeoff
transparently.

• We achieve: (1) over one order of magnitude
improvement in IO performance; (2) over 1/2 and
1/3 reduction in energy consumption and operation
delay, respectively.

25

Thank you!

jinglei@ren.systems

26

