NetApp®

Lamassu: Storage-Efficient Host-Side Encryption

Peter Shah, Won So Advanced Technology Group 9 July, 2015

Agenda

- 1) Overview
- 2) Security
- 3) Solution Architecture
- 4) Experimental Results
- 5) Conclusion

1) Enable external / untrusted storage

■ Public Clouds, etc.

1) Enable external / untrusted storage

■ Public Clouds, etc.

2) Provide data security

■ Restrict trust domain

1) Enable external / untrusted storage

■ Public Clouds, etc.

2) Provide data security

■ Restrict trust domain

1) Enable external / untrusted storage

■ Public Clouds, etc.

2) Provide data security

■ Restrict trust domain

3) Preserve storage deduplication

- **Use convergent encryption**
- Focus on block-oriented deduplication

1) Enable external / untrusted storage

■ Public Clouds, etc.

2) Provide data security

■ Restrict trust domain

3) Preserve storage deduplication

- Use convergent encryption
- Focus on block-oriented deduplication

4) Work with existing applications

- **•** Transparent addition
- § No changes to app or storage systems
- § Self-contained*

Security

Encryption Model

8 © 2015 NetApp, Inc. All rights reserved.

Convergent Encryption (CE)

Equality-Preserving Encryption

■ For any given plain text, convergent encryption will always produce the same cipher text.

Message-Locked Encryption (MLE) Convergent Encryption

■ For any given plain text, convergent encryption will always produce the same cipher text.

■ Most common form: Key derived from data

Message-locked encryption path

Message-Locked Encryption (MLE) Convergent Encryption

- For any given plain text, convergent encryption will always produce the same cipher text.
- Most common form: Key derived from data

Message-locked decryption path

Message-Locked Encryption (MLE) Convergent Encryption

- For any given plain text, convergent encryption will always produce the same cipher text.
- Most common form: Key derived from data

Message-locked decryption path

Key Storage Convergent Encryption

- For any given plain text, convergent encryption will always produce the same cipher text.
- Most common form: Key derived from data

Key Storage Convergent Encryption

■ For any given plain text, convergent encryption will always produce the same cipher text.

Metadata Storage

Key Storage Architecture

15 **O 2015 NetApp, Inc. All rights reserved.**

- **Treat per-block hash-keys as file metadata**
	- **Potentially hundreds, or thousands per file**

- Treat per-block hash-keys as file metadata
	- **Potentially hundreds, or thousands per file**
- **Store keys inside each file**
	- **Preserve transparency**
	- Allow external storage to copy, rename, etc.

- Treat per-block hash-keys as file metadata
	- Potentially hundreds, or thousands per file
- Store keys inside each file
	- **Preserve transparency**
	- Allow external storage to copy, rename, etc.
- § Separate data from metadata
	- Keep keys from polluting duplicate blocks
	- Keep added data from breaking block alignment

- Treat per-block hash-keys as file metadata
	- Potentially hundreds, or thousands per file
- Store keys inside each file
	- **Preserve transparency**
	- Allow external storage to copy, rename, etc.
- § Separate data from metadata
	- Keep keys from polluting duplicate blocks
	- Keep added data from breaking block alignment

File Structure

Logical File Layout

File Structure

Logical File Layout

21

File Structure

Logical File Layout

- Data and metadata must be in sync
	- Depends on underlying storage to prevent partial writes

- Data and metadata must be in sync
	- Depends on underlying storage to prevent partial writes

- Data and metadata must be in sync
	- Depends on underlying storage to prevent partial writes

- Data and metadata must be in sync
	- Depends on underlying storage to prevent partial writes

- Data and metadata must be in sync
	- Depends on underlying storage to prevent partial writes

Crash Detection and Recovery

- Data and metadata must be in sync
	- Depends on underlying storage to prevent partial writes

■ Stale keys are cleaned up during subsequent metadata updates

Results

Storage Efficiency & Performance

Overview Prototype Implementation

Comparison with other Systems

Benchmarking Strategy

1) PlainFS

§ FUSE-based (pass-through)

Comparison with other Systems

Benchmarking Strategy

1) PlainFS

■ FUSE-based (pass-through)

2) EncFS

- FUSE-based
- Provides AES encryption

Comparison with other Systems

Benchmarking Strategy

1) PlainFS

§ FUSE-based (pass-through)

2) EncFS

- FUSE-based
- Provides AES encryption

3) LamassuFS

- FUSE-based
- Provides AES encryption
- **Provides convergent encryption**

Deduplication Results

Comparison of Deduplication Ratios

Deduplication Results

Comparison of Deduplication Ratios

Singe File I/O Throughput

Comparison with other FUSE systems using remote NFS storage

Single File I/O Throughput

Comparison with other FUSE systems using local DRAM storage

Conclusions

Recap and Observations

- Strong security on shared storage
	- Uses standard encryption techniques
- Preserves storage-based deduplication
- Transparent to both application and storage
	- Easy to deploy
- Flexible user-mode architecture
	- Can integrate with other host-side technologies

Conclusions

Recap and Observations

- Strong security on shared storage
	- Uses standard encryption techniques
- Preserves storage-based deduplication
- § Transparent to both application and storage
	- Easy to deploy
- Flexible user-mode architecture
	- Can integrate with other host-side technologies

Questions?

Special Thanks James Kelley

Thank You