

Lamassu: Storage-Efficient Host-Side Encryption

Peter Shah, Won So Advanced Technology Group 9 July, 2015

Agenda

- 1) Overview
- 2) Security
- 3) Solution Architecture
- 4) Experimental Results
- 5) Conclusion

Architectural Goals

1) Enable external / untrusted storage

Public Clouds, etc.

Architectural Goals

- 1) Enable external / untrusted storage
 - Public Clouds, etc.
- 2) Provide data security
 - Restrict trust domain

Architectural Goals

- 1) Enable external / untrusted storage
 - Public Clouds, etc.
- 2) Provide data security
 - Restrict trust domain

Architectural Goals

1) Enable external / untrusted storage

Public Clouds, etc.

2) Provide data security

Restrict trust domain

3) Preserve storage deduplication

- Use convergent encryption
- Focus on block-oriented deduplication

Architectural Goals

1) Enable external / untrusted storage

Public Clouds, etc.

2) Provide data security

Restrict trust domain

3) Preserve storage deduplication

- Use convergent encryption
- Focus on block-oriented deduplication

4) Work with existing applications

- Transparent addition
- No changes to app or storage systems
- Self-contained*

Security

Encryption Model

Convergent Encryption (CE)

Equality-Preserving Encryption

 For any given plain text, convergent encryption will always produce the same cipher text.

Message-Locked Encryption (MLE)

- For any given plain text, convergent encryption will always produce the same cipher text.
- Most common form: Key derived from data

Message-locked encryption path

Message-Locked Encryption (MLE)

- For any given plain text, convergent encryption will always produce the same cipher text.
- Most common form: Key derived from data

Message-locked decryption path

Message-Locked Encryption (MLE)

- For any given plain text, convergent encryption will always produce the same cipher text.
- Most common form: Key derived from data

Message-locked decryption path

Key Storage

- For any given plain text, convergent encryption will always produce the same cipher text.
- Most common form: Key derived from data

Key Storage

 For any given plain text, convergent encryption will always produce the same cipher text

Most common form: Key derived from data

Secret
Key

Hash
Block
Key

Non-convergent

Data
Block
Block
Block
Block
Block
Block
Block

Metadata Storage

Key Storage Architecture

- Treat per-block hash-keys as file metadata
 - Potentially hundreds, or thousands per file

- Treat per-block hash-keys as file metadata
 - Potentially hundreds, or thousands per file
- Store keys inside each file
 - Preserve transparency
 - Allow external storage to copy, rename, etc.

- Treat per-block hash-keys as file metadata
 - Potentially hundreds, or thousands per file
- Store keys inside each file
 - Preserve transparency
 - Allow external storage to copy, rename, etc.
- Separate data from metadata
 - Keep keys from polluting duplicate blocks
 - Keep added data from breaking block alignment

- Treat per-block hash-keys as file metadata
 - Potentially hundreds, or thousands per file
- Store keys inside each file
 - Preserve transparency
 - Allow external storage to copy, rename, etc.
- Separate data from metadata
 - Keep keys from polluting duplicate blocks
 - Keep added data from breaking block alignment

File Structure

Logical File Layout

File Structure

Logical File Layout

File Structure

Logical File Layout

- Data and metadata must be in sync
 - Depends on underlying storage to prevent partial writes

Crash Detection and Recovery

- Data and metadata must be in sync
 - Depends on underlying storage to prevent partial writes

Starting State

Starting State

Block N

Block N

- Data and metadata must be in sync
 - Depends on underlying storage to prevent partial writes

- Data and metadata must be in sync
 - Depends on underlying storage to prevent partial writes

- Data and metadata must be in sync
 - Depends on underlying storage to prevent partial writes

Crash Detection and Recovery

- Data and metadata must be in sync
 - Depends on underlying storage to prevent partial writes

Stale keys are cleaned up during subsequent metadata updates

Results

Storage Efficiency & Performance

Prototype Implementation

Comparison with other Systems

Benchmarking Strategy

1) PlainFS

FUSE-based (pass-through)

Comparison with other Systems

Benchmarking Strategy

1) PlainFS

FUSE-based (pass-through)

2) EncFS

- FUSE-based
- Provides AES encryption

Comparison with other Systems

Benchmarking Strategy

1) PlainFS

FUSE-based (pass-through)

2) EncFS

- FUSE-based
- Provides AES encryption

3) LamassuFS

- FUSE-based
- Provides AES encryption
- Provides convergent encryption

Deduplication Results

Comparison of Deduplication Ratios

Deduplication Results

Comparison of Deduplication Ratios

Singe File I/O Throughput

Comparison with other FUSE systems using remote NFS storage

Single File I/O Throughput

Comparison with other FUSE systems using local DRAM storage

Conclusions

Recap and Observations

- Strong security on shared storage
 - Uses standard encryption techniques
- Preserves storage-based deduplication
- Transparent to both application and storage
 - Easy to deploy
- Flexible user-mode architecture
 - Can integrate with other host-side technologies

Conclusions

Recap and Observations

- Strong security on shared storage
 - Uses standard encryption techniques
- Preserves storage-based deduplication
- Transparent to both application and storage
 - Easy to deploy
- Flexible user-mode architecture
 - Can integrate with other host-side technologies

Questions?

Special Thanks
James Kelley

Thank You