
Rebecca Smith and Scott Rixner

Surviving Peripheral Failures
in Embedded Systems



Motivation

● Embedded systems
are ubiquitous

● They interact with the 
real world via sensors
and actuators

● These peripherals can 
fail asynchronously

2



Contributions & Outline

● Phoenix Peripheral Recovery System
1. Insights into embedded system recovery
2. Procedure for recovering from peripheral failures
3. Mechanisms implementing this procedure
4. Evaluation on microbenchmarks and applications

3



Owl

● An embedded run-time system and 
development toolchain which provides:
○ Productivity: Python interpreter, interactive prompt
○ Hardware access: two native function interfaces

● Available at embeddedpython.org

4

http://embeddedpython.org/


Insights: Embedded Systems

1. External Peripheral State
● External state must be restored
● Phoenix logs all peripheral accesses and handles 

each one individually during recovery

2. Space Constraints
● Microcontrollers have extremely limited memory
● Phoenix only logs memory that has been changed

3. Time Constraints
● Embedded systems are event-driven
● Phoenix minimizes the latency of recovery

5



Insights: Peripherals

1. Peripherals affect the external state in four 
different ways
● Stateless: no state
● Ephemeral: temporary state
● Persistent: state determined by a single write
● Historical: state determined by multiple writes

6



Insights: Peripherals

2. Peripherals do not operate in isolation
a. P1 depends on P2 if P2 failing results in P1 not 

having its intended effect on the external state
○ e.g. autonomous car: motor and servo

7



Insights: Peripherals

3. Not all peripheral accesses can be replayed
a. Re-executing accesses to peripherals that depended 

on the failed peripheral is mandatory
b. Re-executing accesses to other peripherals may be 

incorrect
○ Rematerialize = skip during re-execution, 

restoring the old value instead

8



Insights: Peripherals

4. Restoring persistent state takes extra steps
A. Put P in a safe state during recovery

B. Restore P’s last state during re-execution
○ If P is in the redo set, restore:

what: initial state at point of failed access
when: before re-execution

○ Otherwise, restore:
what: final re-materialized state
when: after re-execution

9



Recovery Procedure

1. Rollback to the point of failure
● Goal: Restore the internal program state

2. Recovery of the failed peripheral
● Goal: Restore system functionality

3. Redo mode execution
● Goal: Restore the external peripheral state

10



Example

11



Example

12

detect
motor
failure



Example

13

put motor, servo 
in safe state

detect
motor
failure



Example

roll
back

14

put motor, servo 
in safe state

detect
motor
failure



Example

recover 
motor

15



Example

16

(no last 
states)



Example

redo

17



Example

rematerialize

18



Example

19

redo



Example

20

redo



Example

exit redo 
mode

21



Mechanisms

● Run-time system:
○ Enables and disables checkpointing
○ Logs the internal and external state when 

checkpointing is enabled
○ Detects success and failure of peripheral accesses
○ Executes the recovery procedure

● Compiler:
○ Injects code to enable checkpointing
○ Injects code to track outstanding peripheral 

accesses

22



Checkpointing Structures

● Goal: Log the internal and external state
○ Store multiple simultaneous checkpoints efficiently

● Stored on a second heap to persist past 
rollback of the Python heap

● Only used when checkpointing is enabled
○ Populated incrementally as state is changed
○ Freed incrementally as accesses are acked

23



Journal

24

● Goal: Log the internal program state

● One entry per store to the Python heap
○ Heap is set read-only by the MPU
○ Faults are handled by journaling the (memory 

address, old contents) prior to executing the store

● Implemented in software; could be 
implemented in hardware for efficiency



Rematerialization Queues

● Goal: Log the external peripheral state

● One queue per peripheral
● One entry per access, which stores:

1. Rollback point: current index into the journal
2. Rematerialization info: arguments and return value

25



Control Flow Queue

● Goal: Drive redo mode execution

● Logs control flow during normal execution
● One entry per bytecode

● Exit redo mode if:
1. Control flow diverges from the original path, or
2. The point of failure detection is reached again

26



Example

27



Example
Journal:

28



Example
Journal:

Rematerialization Queues:

(Motor)

29



Example
Journal:

Rematerialization Queues:

(Motor)

30



Example
Journal:

Rematerialization Queues:

(Motor)

(Servo)

31



Example
Journal:

Rematerialization Queues:

(Servo)

32



Interrupt Handlers

● Goal: Detect failure, acknowledge success

● On success, decrement the count of 
outstanding peripheral accesses

● On failure, throw an exception to the 
interpreter requesting rollback

33



Compile-time Support

● Goal: Identify rollback points
○ New JOURNAL_STORE bytecode enables checkpointing
○ Inserted just before loading arguments to peripheral 

access function calls

● Goal: Track outstanding peripheral 
accesses
○ After each access, code is added to increment the 

number of outstanding accesses

34



Application Development

● Goal: disentangle peripheral recovery code 
from application-specific code

● Programmer must follow two simple rules:
1. Define a Python class for each peripheral
2. Provide a config file including peripheral metadata

35



Peripheral Class

● Goal: Specify peripheral recovery behavior

● Each peripheral extends one of four classes
○ StatelessPeripheral
○ EphemeralPeripheral
○ PersistentPeripheral

○ HistoricalPeripheral

● Programmer defines functions to support:
○ Access: the only C code the programmer must write 
○ Recovery & Restoration: programmer determines 

how; system determines when
36



Example

37



Configuration File

● Goal: Specify peripheral metadata
1. Number of interrupts per peripheral access
2. Dependencies between peripherals

38



Evaluation
● Used the Stellaris LM3S9B92 for evaluation

○ 96 KB SRAM, 256 KB flash, 50 MHz

● Microbenchmarks:
○ Named in the form <peripherals>_<actions>

■ <peripherals> ⊂ {gyro, compass}
■ <actions> ⊂ {r, w, c} for {read, write, compute}

● Applications:
○ Autonomous RC car (motor, servo, gyro)
○ Obstacle tracker (display, range finder)
○ Virtual compass (display, compass)

39



Evaluation: Space

40



Evaluation: Space

41



Evaluation: Time

● Overhead of a single failure: 12‒143 ms

● Overhead of a journaled store: 6.2 μs
○ Projected 40.2 ns with hardware journal

● No discernible slowdown on ⅔ applications
○ Virtual compass (intensive accesses)
○ Autonomous RC car (periodic accesses)
○ Obstacle tracker (fixed sleep between accesses)

42



Conclusions

● Hardware peripherals introduce complex 
failure scenarios
○ External state impacts the real world
○ Failures occur asynchronously

● Phoenix simplifies handling these failures
○ Incremental checkpointing
○ Precise rollback to the source of the failure
○ Correct recovery of both the internal program state 

and the external peripheral state

43


