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Motivation

● Embedded systems
are ubiquitous

● They interact with the 
real world via sensors
and actuators

● These peripherals can 
fail asynchronously
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Contributions & Outline

● Phoenix Peripheral Recovery System
1. Insights into embedded system recovery
2. Procedure for recovering from peripheral failures
3. Mechanisms implementing this procedure
4. Evaluation on microbenchmarks and applications
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Owl

● An embedded run-time system and 
development toolchain which provides:
○ Productivity: Python interpreter, interactive prompt
○ Hardware access: two native function interfaces

● Available at embeddedpython.org
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http://embeddedpython.org/


Insights: Embedded Systems

1. External Peripheral State
● External state must be restored
● Phoenix logs all peripheral accesses and handles 

each one individually during recovery

2. Space Constraints
● Microcontrollers have extremely limited memory
● Phoenix only logs memory that has been changed

3. Time Constraints
● Embedded systems are event-driven
● Phoenix minimizes the latency of recovery
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Insights: Peripherals

1. Peripherals affect the external state in four 
different ways
● Stateless: no state
● Ephemeral: temporary state
● Persistent: state determined by a single write
● Historical: state determined by multiple writes
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Insights: Peripherals

2. Peripherals do not operate in isolation
a. P1 depends on P2 if P2 failing results in P1 not 

having its intended effect on the external state
○ e.g. autonomous car: motor and servo
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Insights: Peripherals

3. Not all peripheral accesses can be replayed
a. Re-executing accesses to peripherals that depended 

on the failed peripheral is mandatory
b. Re-executing accesses to other peripherals may be 

incorrect
○ Rematerialize = skip during re-execution, 

restoring the old value instead
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Insights: Peripherals

4. Restoring persistent state takes extra steps
A. Put P in a safe state during recovery

B. Restore P’s last state during re-execution
○ If P is in the redo set, restore:

what: initial state at point of failed access
when: before re-execution

○ Otherwise, restore:
what: final re-materialized state
when: after re-execution
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Recovery Procedure

1. Rollback to the point of failure
● Goal: Restore the internal program state

2. Recovery of the failed peripheral
● Goal: Restore system functionality

3. Redo mode execution
● Goal: Restore the external peripheral state

10



Example
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Example
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Example
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Example
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Example

rematerialize
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Example
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Example

exit redo 
mode
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Mechanisms

● Run-time system:
○ Enables and disables checkpointing
○ Logs the internal and external state when 

checkpointing is enabled
○ Detects success and failure of peripheral accesses
○ Executes the recovery procedure

● Compiler:
○ Injects code to enable checkpointing
○ Injects code to track outstanding peripheral 

accesses
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Checkpointing Structures

● Goal: Log the internal and external state
○ Store multiple simultaneous checkpoints efficiently

● Stored on a second heap to persist past 
rollback of the Python heap

● Only used when checkpointing is enabled
○ Populated incrementally as state is changed
○ Freed incrementally as accesses are acked
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Journal
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● Goal: Log the internal program state

● One entry per store to the Python heap
○ Heap is set read-only by the MPU
○ Faults are handled by journaling the (memory 

address, old contents) prior to executing the store

● Implemented in software; could be 
implemented in hardware for efficiency



Rematerialization Queues

● Goal: Log the external peripheral state

● One queue per peripheral
● One entry per access, which stores:

1. Rollback point: current index into the journal
2. Rematerialization info: arguments and return value
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Control Flow Queue

● Goal: Drive redo mode execution

● Logs control flow during normal execution
● One entry per bytecode

● Exit redo mode if:
1. Control flow diverges from the original path, or
2. The point of failure detection is reached again
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Example
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Example
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Interrupt Handlers

● Goal: Detect failure, acknowledge success

● On success, decrement the count of 
outstanding peripheral accesses

● On failure, throw an exception to the 
interpreter requesting rollback
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Compile-time Support

● Goal: Identify rollback points
○ New JOURNAL_STORE bytecode enables checkpointing
○ Inserted just before loading arguments to peripheral 

access function calls

● Goal: Track outstanding peripheral 
accesses
○ After each access, code is added to increment the 

number of outstanding accesses
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Application Development

● Goal: disentangle peripheral recovery code 
from application-specific code

● Programmer must follow two simple rules:
1. Define a Python class for each peripheral
2. Provide a config file including peripheral metadata
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Peripheral Class

● Goal: Specify peripheral recovery behavior

● Each peripheral extends one of four classes
○ StatelessPeripheral
○ EphemeralPeripheral
○ PersistentPeripheral

○ HistoricalPeripheral

● Programmer defines functions to support:
○ Access: the only C code the programmer must write 
○ Recovery & Restoration: programmer determines 

how; system determines when
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Example
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Configuration File

● Goal: Specify peripheral metadata
1. Number of interrupts per peripheral access
2. Dependencies between peripherals
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Evaluation
● Used the Stellaris LM3S9B92 for evaluation

○ 96 KB SRAM, 256 KB flash, 50 MHz

● Microbenchmarks:
○ Named in the form <peripherals>_<actions>

■ <peripherals> ⊂ {gyro, compass}
■ <actions> ⊂ {r, w, c} for {read, write, compute}

● Applications:
○ Autonomous RC car (motor, servo, gyro)
○ Obstacle tracker (display, range finder)
○ Virtual compass (display, compass)
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Evaluation: Space
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Evaluation: Space
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Evaluation: Time

● Overhead of a single failure: 12‒143 ms

● Overhead of a journaled store: 6.2 μs
○ Projected 40.2 ns with hardware journal

● No discernible slowdown on ⅔ applications
○ Virtual compass (intensive accesses)
○ Autonomous RC car (periodic accesses)
○ Obstacle tracker (fixed sleep between accesses)
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Conclusions

● Hardware peripherals introduce complex 
failure scenarios
○ External state impacts the real world
○ Failures occur asynchronously

● Phoenix simplifies handling these failures
○ Incremental checkpointing
○ Precise rollback to the source of the failure
○ Correct recovery of both the internal program state 

and the external peripheral state
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