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An inherent security limitation in 
multithreaded programming model

• All the threads inside a process (implicitly) assumed 
to be mutually trusted:
• Same address space

• Same privilege to access recourses, especially data
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In reality…

• A multithreaded application can concurrently serve 
different principals (users or clients) that usually do 
not fully trust each other.
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One thread attacking another is a 
real world threat

Memcached

• Insufficient user 
authentication

• Buffer overrun 
CVE-2009-2415

FUSE

• Logic bug

• Especially critical for 
encrypted file systems 
built upon FUSE
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Cherokee

• Format string 
CVE-2004-1097

• Logic bug         
CVE-2014-0160

• A compromised (worker) thread can arbitrarily access data
privately owned by other threads.



In a programmer’s perspective

• Both intended privilege separation and intended 
sharing of data objects when writing programs

• Only the intention in category 3 is attainable…
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Category Programmer’s Intention on data Possible

1 Privately owned/accessed X

2 Shared by a subset of threads X

3 Shared among all the threads √



process_active_connections(cherokee_thread_t *thd) {
...
buf = (char *) malloc (size);
...
len = recv (SOCKET_FD(socket), buf, buf_size, 0);
...

}

In a programmer’s perspective

• Category 1 – Privately owned/accessed

• Category 2 – Shared by a subset of threads
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Cherokee-1.2.2

Memcached-1.4.13 Main thread Memcached-1.4.13 Worker thread

void dispatch_conn_new(...) {
...
CQ_ITEM *item = malloc(sizeof(CQ_ITEM));
...
cq_push(thread->new_conn_queue, item);
...

}

static void *worker_libevent(...) {
...
item = cq_pop(me->new_conn_queue);
...

}



Our goal

• How to develop a generic data object-level privilege 
separation mechanism so that all of the three 
categories of how a data object is intended to be 
accessed by threads can be achieved?
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Outline

• Motivation

• Challenges and Our Approach

• Design and Implementation

• Evaluation

• Discussion and Limitations

• Conclusion
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Approach I – Process Isolation

• Put threads into separate processes 
• Complex IPC design and implementation

• process synchronization, policy handling and checking

• Multi-process architecture 
• Unpractical for legacy applications

• 80% web servers are multithreaded
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sendto()recvfrom()

mmap() shm_open()



Approach II – Software Fault Isolation

• Approach
• Programmer annotates source code
• Compiler translates annotations to runtime checks of 

memory reads and writes

• However, performance is a serious concern…
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Thread 1 Thread 2 Thread 3

Check… Pass! Check… Deny!



Our Idea

• Key Observation:
• Page table protection bits can be leveraged to do 

efficient reference monitoring, if the privilege separation 
policy can be mapped to those protection bits.
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Challenges

• Mapping Challenge
• Shared (single) page table vs “policy-to-protection-bits” 

mapping

• Allocation Challenge
• Data objects demanding distinct privileges cannot be 

simply allocated onto the same page

• Existing memory management algorithms not applicable

• Retrofitting challenge
• Minimize programmers’ porting effort

• Policy specification, source code change, etc.  
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Our Approach: Arbiter

• Associate a separate page table to each thread

• A new dynamic memory segment: ASMS
• Map shared data objects onto the same set of physical 

pages and set the page table permission bits according 
to the privilege separation policy.

• A new memory allocation mechanism to achieve 
privilege separation at data-object granularity

• A label-based security model and a set of APIs
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An Example
Thread A
{pr, pw}

Thread B 
{pr}

Thread C 
{}

passwd
{pr, pw}

RW R -
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int main() { //thread A

...//initialization

//create thread B and C

pthread_create(&threadB,...,L_B,{})

pthread_create(&threadC,...,L_C,{})

//allocation memory for passwd

passwd=malloc(256);

...

} Original code

int main() { //thread A

...//initialization

//create thread B and C

label_t L_B={pr}, L_C={};

ab_pthread_create(&threadB,...,L_B,{})

ab_pthread_create(&threadC,...,L_C,{})

//allocation memory for passwd

label_t L_passwd={pr,pw};

passwd=ab_malloc(256,L_passwd);

...

} Ported code
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• Motivation
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• Discussion and Limitations
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Design and Implementation

• Arbiter threads
• Resemble traditional threads in almost every aspect

• Shared code seg (.text), data seg (.data, .bss), open files

• A new dynamically allocated memory segment ASMS

• Major system components
• Kernel memory region management

• Page fault handling

• User space memory allocation

• Label model and APIs
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System Architecture
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Evaluation

• Port three applications
• Memcached

• Cherokee

• FUSE

• Porting effort
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Evaluation

• Protection effectiveness
• Arbiter can defeat all the simulated attacks and 

counterattacks.
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Application Simulated Attack Arbiter Protection

Memcached
Lack of user auth √

Buffer overflow √

Cherokee
Format string √

Logic bug √

FUSE
Logic bug √

Code injection √



Evaluation

• Performance – microbenchmarks
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Evaluation

• Application performance – Memcached
• Average throughput decrease ~5.6%
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Evaluation

• Application performance – Cherokee
• Average slowdown ~1.8% (file size), ~3.0% (# threads)
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Evaluation

• Application performance – FUSE
• Average slowdown ~7.4%
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Evaluation

• Application performance much better than 
microbenchmarks
• Extra cost of Arbiter API is amortized by other 

operations of the application.

• RSS Memory overhead
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Discussion and Limitations

• Two users served by the same thread
• Per-user “virtual” thread?

• Lock granularity of malloc()
• Potential to adopt per-label lock

• Annotation effort
• How to ensure policy correctness and avoid 

misconfiguration?
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Conclusion

• Threads not always mutually trusted: needs 
privilege separation

• Page table protection bits to achieve efficient fine-
grained reference monitoring with proper memory 
management

• Design and implementation of Arbiter system

• Retrofitting and evaluation of three real world 
applications

• Ease of adoption, effectiveness of protection, and 
reasonable performance overhead
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