Between Mutual Trust and Mutual Distrust:
Practical Fine-grained Privilege Separation in
Multithreaded Applications

Jun Wang, Xi Xiong, Peng Liu

PENNSTATE
i)

An inherent security limitation in
multithreaded programming model

* All the threads inside a process (implicitly) assumed
to be mutually trusted:

* Same address space
* Same privilege to access recourses, especially data

4 Process N

Virtual

gt

Physical

PENNSTAT
% Penn State Cyber Security Lab 2

In reality...

* A multithreaded application can concurrently serve
different principals (users or clients) that usually do
not fully trust each other.

s S

Thread 2 Thread 3

Virtual

Physical

PENNSTATE

Penn State Cyber Security Lab

One thread attacking another is a
real world threat

A compromised (worker) thread can arbitrarily access data
privately owned by other threads.

Memcached Cherokee FUSE
* Insufficientuser ¢ Format string * Logic bug
authentication CVE-2004-1057 * Especially critical for
e Buffer overrun * Logic bug enf:rypted file systems
CVE-2009-2415 CVE-2014-0160 built upon FUSE
_—
= " FUSE
PENNSTAT
BN Penn State Cyber Security Lab 4

In a programmer’s perspective

* Both intended privilege separation and intended
sharing of data objects when writing programs

Category | Programmer’s Intention on data

1 Privately owned/accessed X
2 Shared by a subset of threads X
3 Shared among all the threads v

* Only the intention in category 3 is attainable...

PENNSTATE

Penn State Cyber Security Lab

In a programmer’s perspective

 Category 1 — Privately owned/accessed

process_active _connections(cherokee thread t *thd) {

buf = (char *) malloc (size);

len = recv (SOCKET_FD(socket), buf, buf_size, 0);

} Cherokee-1.2.2
e Category 2 — Shared by a subset of threads

void dispatch_conn_new(...) { static void *worker_libevent(...) {
EQ_ITEM *item = malloc(sizeof(CQ_ITEM)); item = cq_pop(me->new_conn_queue);
Ed_push(thread->new_conn_queue, item); }

y
Memcached-1.4.13 Main thread Memcached-1.4.13 Worker thread

PENNSTAT

[t Penn State Cyber Security Lab 6

Our goal

* How to develop a generic data object-level privilege
separation mechanism so that all of the three
categories of how a data object is intended to be
accessed by threads can be achieved?

PENNSTATE
i)

Outline

* Challenges and Our Approach
* Design and Implementation

* Evaluation

* Discussion and Limitations

* Conclusion

PENNSTATE
i)

Approach | — Process |solation

* Put threads into separate processes

 Complex IPC designh and implementation
e process synchronization, policy handling and checking

recvfrom() sendto()

Process 1 Process 2 Process 3

mmap() shm_open()

* Multi-process architecture
* Unpractical for legacy applications

° 0 [
80% web servers are multithreaded 00 00
PENNSTATE o o

% Penn State Cyber Security Lab

sick process happy process happy process

Approach Il — Software Fault Isolation

* Approach
* Programmer annotates source code

* Compiler translates annotations to runtime checks of
memory reads and writes

—

Check... Pass! Check... Deny!

* However, performance is a serious concern...

PENNSTATE

Penn State Cyber Security Lab 10

Our ldea

* Key Observation:

* Page table protection bits can be leveraged to do
efficient reference monitoring, if the privilege separation
policy can be mapped to those protection bits.

" c @

=

R

Virtual

Jx—

Virtual Virtual

Physical

PENNSTATE

Penn State Cyber Security Lab 11

Challenges

* Mapping Challenge
e Shared (single) page table vs “policy-to-protection-bits”
mapping
* Allocation Challenge

e Data objects demanding distinct privileges cannot be
simply allocated onto the same page

e Existing memory management algorithms not applicable

e Retrofitting challenge
* Minimize programmers’ porting effort
 Policy specification, source code change, etc.
PENNSTAT

i

Our Approach: Arbiter

* Associate a separate page table to each thread

* A new dynamic memory segment: ASMS

* Map shared data objects onto the same set of physical
pages and set the page table permission bits according
to the privilege separation policy.

* A new memory allocation mechanism to achieve
privilege separation at data-object granularity

* A label-based security model and a set of APIs

PENNSTAT
BN Penn State Cyber Security Lab 13

An Example

Thread A Thread B Thread C
{pr, pw} {pr} {}

passwd
{pr, pw}

int main() { //thread A
.//initialization
//create thread B and C
label t L B={pr}, L C={};
ab pthread create (&threadB, ,L B,
ab_pthread;create(&threadc,. 'L C,{})
//allocation memory for passwd
label t L passwd={pr,pw};
passwd=ab malloc(”56,L passwd) ;

} Ported code

PENNSTATE
ﬁ Penn State Cyber Security Lab 14

Outline

* Design and Implementation
* Evaluation

* Discussion and Limitations
* Conclusion

PENNSTAT
i)

Designh and Implementation

e Arbiter threads

* Resemble traditional threads in almost every aspect
» Shared code seg (.text), data seg (.data, .bss), open files

* A new dynamically allocated memory segment ASMS

* Major system components
* Kernel memory region management
* Page fault handling
* User space memory allocation
e Label model and APIs

PENNSTAT
i)

System Architecture

\

Arbiter

Thread 1 Thread K

Arbiter

Z

l
l
l
l

| T _ 1 Arbiter API

User Space -
Ke rnel Siace r___ L . ES B N H e BN B b NNy N q

;- \ 2 ‘ Page R R ASMS |

| | ASMS Management) Teble W - |

| 1 — |

I Page Fault Handler Physical

| | | Memory '

- |

PENNSTATE

Penn State Cyber Security Lab

E el el T T Eai el e Tl N Tl

17

Outline

e Evaluation
* Discussion and Limitations
* Conclusion

PENNSTAT
i)

Evaluation

* Port three applications

e Memcached
 Cherokee
e FUSE

* Porting effort

Application Total LOC (approx.) LOC added/changed
Memcached-1.4.13 20k 100 (0.5%)
Cherokee-1.2.2 60k 188 (0.3%)
FUSE-2.3.0 8K 129 (1.6%)

PENNSTAT
i)

Evaluation

* Protection effectiveness
e Arbiter can defeat all the simulated attacks and

counterattacks.
Application Simulated Attack | Arbiter Protection
Lack of user auth V
Memcached
Buffer overflow \'A
Format string V
Cherokee
Logic bug V
Logic bu \'A
FUSE 2 ® ;

Code injection

PENNSTATE

Penn State Cyber Security Lab

Evaluation

* Performance — microbenchmarks

Operation Linux (us) | Arbiter (us) Overhead
(ab_)malloc 4.14 9.09 2.20
(ab_)free 2.06 8.36 4.06
(ab_)calloc 4.14 8.41 2.03
(ab_)realloc 3.39 8.27 2.43
(ab_)pthread_create 91.45 145.33 1.59
(ab_)pthread_join 36.22 41.00 [.13
(ab_)pthread_self 2.99 1.98 0.66
create_category — 1.17 —
get_label — 7.65 —
get_ownership — 7.55 —
get_mem_label — 7.66 —
ab_null (RPC round trip) — 5.84

(absys_)sbrk 0.65 0.76 [.36
(absys_)mmap 0.60 0.83 1.38
(absys_)mprotect 0.83 0.92 [.11

PENNSTAT

Penn State Cyber Security Lab

21

Evaluation

* Application performance — Memcached
* Average throughput decrease ~5.6%

S (a) S (b)

& T T T ! T T & . ‘*\ T ! ! ! ! ! !

S 4or - 1 4 i RN IR

@ @ ~ - T N

—_ —_ T .

o 35¢ o 35f-i

o o

(=] (=]

— 30 — 30}

X X

5 25} 5 25}

o S N N R N NS R o S S N N N N S

L . : L : :

9 20f| = =< SET Memcached} - \{ D 20 * - GET Memcached| i

o +—+ SET Arbiter D o +—+ GET Arbiter ;

-}E 15 L | 1 1 1 l ety Waleleiel A -}E 151 L 1 1 1 1 l iy Maleiiatel Rl

1 2 3 4 5 10 20 30 40 50 100 1 2 3 4 5 10 20 30 40 50 100

Value size (x10 byte) Value size (x10 byte)

(c)

(d)

I
[=]
=
o

L
o
w
o

[
n
1
[
[%,]
T

|| == GET Memcached,,,,,é,,,,,,,:,,,,,,
+—+ GET Arbiter '

I T T T 1 T

|| > =< SET Memcached
+—+ SET Arbiter

I T 1 T 1 T

[\
Q
;]
(=)

=
5]
=
o

Throughput (x1000 reg/sec)
S
Throughput (x1000 reg/sec)
w
(=]

PENNSTAT 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
[i) Key size (x10 byte) Key size (x10 byte)

Evaluation

* Application performance — Cherokee
e Average slowdown ~1.8% (file size), ~3.0% (# threads)

(a) (b)

6 T T T 6-0 ! ! ! T T T
’g - |3 Cherokee ‘g : : { = =< Cherokee
g_ S5p|EEE Arbiter g__ 5.5/ i e=me Arbiter
0] : ! 0} ' ' ' ' ' '
— : —
o4l Pt P o] o 5.0
o . o
o ; o
— : —
X3 M B oo X 45| W T
o : o
- ; -]
22 SN = e T e e e S S
o : [=)]
S ; -
o 1 - M -] T —————Y————__——_—YMSMSMS
) -

0 3.0 AR R T S

1KB 10KB 100KB 1MB 5 10 15 20 25 30 35 40
File size Number of threads
PENNSTAT
BN Penn State Cyber Security Lab

Evaluation

* Application performance — FUSE
* Average slowdown ~7.4%

2 3.0 ! ! ! ! ' '
a > 5_ ___________________ 1 FUSE |
(e])
o : : : : I Arbiter
o 20_“' """"" r r n
S | | | | |
X 15[S o o o
10l - s e T N — e
305 [: : - - : e . R I R
2 0.
o ECEE EncEl Em TR
E 0.0 _.
~ cd Is touch cp mv echo cat rm
Operations
PENNSTATE

Penn State Cyber Security Lab

24

Evaluation

* Application performance much better than
microbenchmarks

e Extra cost of Arbiter APl is amortized by other
operations of the application.

* RSS Memory overhead

Application Original (KB) Arbiter (KB) Overhead
memcached 60,664 64.452 6.2%
cherokee 3916 4,120 5.2%
FUSE 732 760 3.9%

PENNSTAT
i)

Outline

e Discussion and Limitations

* Conclusion

PENNSTAT
i)

Discussion and Limitations

* Two users served by the same thread
* Per-user “virtual” thread?

 Lock granularity of malloc()
* Potential to adopt per-label lock

e Annotation effort

 How to ensure policy correctness and avoid
misconfiguration?

PENNSTAT
i)

Conclusion

* Threads not always mutually trusted: needs
privilege separation

* Page table protection bits to achieve efficient fine-
grained reference monitoring with proper memory
management

* Design and implementation of Arbiter system

* Retrofitting and evaluation of three real world
applications

* Ease of adoption, effectiveness of protection, and
reasonable performance overhead

PENNSTATE
i)

PENNSTATE

Penn State Cyber Security Lab

29

