
Between Mutual Trust and Mutual Distrust:
Practical Fine-grained Privilege Separation in 

Multithreaded Applications

Jun Wang, Xi Xiong, Peng Liu

Penn State Cyber Security Lab 1



An inherent security limitation in 
multithreaded programming model

• All the threads inside a process (implicitly) assumed 
to be mutually trusted:
• Same address space

• Same privilege to access recourses, especially data

Penn State Cyber Security Lab 2

Thread 1 Thread 2 Thread 3

R
W

Virtual

Physical

Process



In reality…

• A multithreaded application can concurrently serve 
different principals (users or clients) that usually do 
not fully trust each other.

Penn State Cyber Security Lab 3

Thread 1 Thread 2 Thread 3

R
W

Virtual

Physical



One thread attacking another is a 
real world threat

Memcached

• Insufficient user 
authentication

• Buffer overrun 
CVE-2009-2415

FUSE

• Logic bug

• Especially critical for 
encrypted file systems 
built upon FUSE

Penn State Cyber Security Lab 4

Cherokee

• Format string 
CVE-2004-1097

• Logic bug         
CVE-2014-0160

• A compromised (worker) thread can arbitrarily access data
privately owned by other threads.



In a programmer’s perspective

• Both intended privilege separation and intended 
sharing of data objects when writing programs

• Only the intention in category 3 is attainable…

Penn State Cyber Security Lab 5

Category Programmer’s Intention on data Possible

1 Privately owned/accessed X

2 Shared by a subset of threads X

3 Shared among all the threads √



process_active_connections(cherokee_thread_t *thd) {
...
buf = (char *) malloc (size);
...
len = recv (SOCKET_FD(socket), buf, buf_size, 0);
...

}

In a programmer’s perspective

• Category 1 – Privately owned/accessed

• Category 2 – Shared by a subset of threads

Penn State Cyber Security Lab 6

Cherokee-1.2.2

Memcached-1.4.13 Main thread Memcached-1.4.13 Worker thread

void dispatch_conn_new(...) {
...
CQ_ITEM *item = malloc(sizeof(CQ_ITEM));
...
cq_push(thread->new_conn_queue, item);
...

}

static void *worker_libevent(...) {
...
item = cq_pop(me->new_conn_queue);
...

}



Our goal

• How to develop a generic data object-level privilege 
separation mechanism so that all of the three 
categories of how a data object is intended to be 
accessed by threads can be achieved?

Penn State Cyber Security Lab 7



Outline

• Motivation

• Challenges and Our Approach

• Design and Implementation

• Evaluation

• Discussion and Limitations

• Conclusion

Penn State Cyber Security Lab 8



Approach I – Process Isolation

• Put threads into separate processes 
• Complex IPC design and implementation

• process synchronization, policy handling and checking

• Multi-process architecture 
• Unpractical for legacy applications

• 80% web servers are multithreaded

Penn State Cyber Security Lab 9

Process 1 Process 2 Process 3

sendto()recvfrom()

mmap() shm_open()



Approach II – Software Fault Isolation

• Approach
• Programmer annotates source code
• Compiler translates annotations to runtime checks of 

memory reads and writes

• However, performance is a serious concern…

Penn State Cyber Security Lab 10

Thread 1 Thread 2 Thread 3

Check… Pass! Check… Deny!



Our Idea

• Key Observation:
• Page table protection bits can be leveraged to do 

efficient reference monitoring, if the privilege separation 
policy can be mapped to those protection bits.

Penn State Cyber Security Lab 11

Thread 1 Thread 2 Thread 3

R
-

Virtual

Physical

-
-

Virtual
R
W

Virtual



Challenges

• Mapping Challenge
• Shared (single) page table vs “policy-to-protection-bits” 

mapping

• Allocation Challenge
• Data objects demanding distinct privileges cannot be 

simply allocated onto the same page

• Existing memory management algorithms not applicable

• Retrofitting challenge
• Minimize programmers’ porting effort

• Policy specification, source code change, etc.  

Penn State Cyber Security Lab 12



Our Approach: Arbiter

• Associate a separate page table to each thread

• A new dynamic memory segment: ASMS
• Map shared data objects onto the same set of physical 

pages and set the page table permission bits according 
to the privilege separation policy.

• A new memory allocation mechanism to achieve 
privilege separation at data-object granularity

• A label-based security model and a set of APIs

Penn State Cyber Security Lab 13



An Example
Thread A
{pr, pw}

Thread B 
{pr}

Thread C 
{}

passwd
{pr, pw}

RW R -

Penn State Cyber Security Lab 14

int main() { //thread A

...//initialization

//create thread B and C

pthread_create(&threadB,...,L_B,{})

pthread_create(&threadC,...,L_C,{})

//allocation memory for passwd

passwd=malloc(256);

...

} Original code

int main() { //thread A

...//initialization

//create thread B and C

label_t L_B={pr}, L_C={};

ab_pthread_create(&threadB,...,L_B,{})

ab_pthread_create(&threadC,...,L_C,{})

//allocation memory for passwd

label_t L_passwd={pr,pw};

passwd=ab_malloc(256,L_passwd);

...

} Ported code



Outline

• Motivation

• Challenges and Our Approach

• Design and Implementation

• Evaluation

• Discussion and Limitations

• Conclusion

Penn State Cyber Security Lab 15



Design and Implementation

• Arbiter threads
• Resemble traditional threads in almost every aspect

• Shared code seg (.text), data seg (.data, .bss), open files

• A new dynamically allocated memory segment ASMS

• Major system components
• Kernel memory region management

• Page fault handling

• User space memory allocation

• Label model and APIs

Penn State Cyber Security Lab 16



System Architecture

Penn State Cyber Security Lab 17

Security Manager

RPC
...

User Space
Kernel Space

ASMS  Management

Page Fault Handler

Arbiter API

Arbiter
Thread 1

Arbiter
Thread K

ASMS Library

R
W

R
-

...Page 
Table

Physical 
Memory

Annotations Annotations

ASMS



Outline

• Motivation

• Challenges and Our Approach

• Design and Implementation

• Evaluation

• Discussion and Limitations

• Conclusion

Penn State Cyber Security Lab 18



Evaluation

• Port three applications
• Memcached

• Cherokee

• FUSE

• Porting effort

Penn State Cyber Security Lab 19



Evaluation

• Protection effectiveness
• Arbiter can defeat all the simulated attacks and 

counterattacks.

Penn State Cyber Security Lab 20

Application Simulated Attack Arbiter Protection

Memcached
Lack of user auth √

Buffer overflow √

Cherokee
Format string √

Logic bug √

FUSE
Logic bug √

Code injection √



Evaluation

• Performance – microbenchmarks

Penn State Cyber Security Lab 21



Evaluation

• Application performance – Memcached
• Average throughput decrease ~5.6%

Penn State Cyber Security Lab 22



Evaluation

• Application performance – Cherokee
• Average slowdown ~1.8% (file size), ~3.0% (# threads)

Penn State Cyber Security Lab 23



Evaluation

• Application performance – FUSE
• Average slowdown ~7.4%

Penn State Cyber Security Lab 24



Evaluation

• Application performance much better than 
microbenchmarks
• Extra cost of Arbiter API is amortized by other 

operations of the application.

• RSS Memory overhead

Penn State Cyber Security Lab 25



Outline

• Motivation

• Challenges and Our Approach

• Design and Implementation

• Evaluation

• Discussion and Limitations

• Conclusion

Penn State Cyber Security Lab 26



Discussion and Limitations

• Two users served by the same thread
• Per-user “virtual” thread?

• Lock granularity of malloc()
• Potential to adopt per-label lock

• Annotation effort
• How to ensure policy correctness and avoid 

misconfiguration?

Penn State Cyber Security Lab 27



Conclusion

• Threads not always mutually trusted: needs 
privilege separation

• Page table protection bits to achieve efficient fine-
grained reference monitoring with proper memory 
management

• Design and implementation of Arbiter system

• Retrofitting and evaluation of three real world 
applications

• Ease of adoption, effectiveness of protection, and 
reasonable performance overhead

Penn State Cyber Security Lab 28



Penn State Cyber Security Lab 29


