
Memshare: a Dynamic
Multi-tenant Key-value Cache

ASAF CIDON*, DANIEL RUSHTON† , STEPHEN M. RUMBLE‡, RYAN STUTSMAN†

*STANFORD UNIVERSITY, †UNIVERSITY OF UTAH, ‡GOOGLE INC.

1

Cache is 100X Faster Than Database

2

Web Server

100 us

10 ms

Cache Hit Rate Drives Cloud Performance

• Small improvements to cache hit rate
make big difference:

• At 98% cache hit rate:
• +1% hit rate  35% speedup

• Facebook study [Atikoglu ’12]

3

Static Partitioning  Low Hit Rates
• Cache providers statically partition their

memory among applications

• Examples:
• Facebook
• Amazon Elasticache
• Memcachier

4

Partitioned Memory Over Time

5

Static Partition No Partition

App B App C

Partitioned vs No Partition Hit Rates

Application Hit Rate Partitioned Hit Rate No Partition

Combined 87.8% 88.8%

A 97.6% 96.6%

B 98.8% 99.1%

C 30.1% 39.2%

6

Partitioned Memory: Pros and Cons

• Disadvantages:
• Lower hit rate due to low utilization
• Higher TCO

• Advantages:
• Isolated performance and predictable hit rate
• “Fairness”: customers get what they pay for

7

Memshare: the Best of Both Worlds

• Optimize memory allocation to maximize
overall hit rate

• While providing minimal guaranteed
memory allocation and performance
isolation

8

Multi-tenant Cache Design Challenges

1. Decide application memory allocation
to optimize hit rate

2. Enforce memory allocation among
applications

9

Estimate Hit Rate Curve Gradient to Optimize Hit Rate

10

Estimate Hit Rate Curve Gradient to Optimize Hit Rate

11

Estimating Hit Rate Gradient

12

• Track access frequency to
recently evicted objects to
determine gradient at working
point

• Can be further improved with
full hit rate curve estimation

• SHARDS [Waldspurger 2015, 2017]

• AET [Hu 2016]

Multi-tenant Cache Design Challenges

1. Decide application memory allocation to
optimize hit rate

2. Enforce memory allocation among
applications

13

Multi-tenant Cache Design Challenges

1. Decide application memory allocation to
optimize hit rate

2. Enforce memory allocation among
applications

14

Not so simple

Slab Allocation Primer

15

Memcached Server

App 1 App 2

Slab Allocation Primer

16

Memcached Server

App 1 App 2

Memcached Server

Slab Allocation Primer

17

LRU Queues

App 1 App 2

Goal: Move 4KB from App 2 to App 1

18

Memcached Server

App 1 App 2

Goal: Move 4KB from App 2 to App 1

19

• Problems:
• Need to evict 1MB
• Contains many small objects,

some are hot

• App 1 can only use extra
space for objects of
certain size

Memcached Server

App 1 App 2

Goal: Move 4KB from App 2 to App 1

20

• Problems:
• Need to evict 1MB
• Contains many small objects,

some are hot

• App 1 can only use extra
space for objects of
certain size

Problematic even for one application, see Cliffhanger [Cidon
2016]

Memcached Server

App 1 App 2

Instead of Slabs: Log-structured Memory

21

Log segments

Log Head

Instead of Slabs: Log-structured Memory

22

Log segments

Log Head

Newly written object

Instead of Slabs: Log-structured Memory

23

Log segments

Log Head

Applications are Physically Intermixed

24

Log segments

Log Head

App 1 App 2

Memshare’s Sharing Model
• Reserved Memory: guaranteed static memory

• Pooled Memory: application’s share of pooled memory

• Target Memory = Reserved Memory + Pooled Memory

25

Cleaning Priority Determines Eviction Priority

• Q: When does Memshare evict?

• A: Newly written objects evict old objects, but
not in critical path

• Cleaner keeps 1% of cache empty

• Cleaner tries to enforce actual memory allocation to be
equal to Target Memory

26

Cleaner Pass

27

App 1 App 2

n candidate segments (n = 2)

n - 1 survivor segments (n = 2)

Cleaner Pass

28

App 1 App 2

n candidate segments (n = 2)

n - 1 survivor segments (n = 2)

Cleaner Pass

29

App 1 App 2

n candidate segments (n = 2)

n - 1 survivor segments (n = 2)

Cleaner Pass

30

App 1 App 2

n candidate segments (n = 2)

n - 1 survivor segments (n = 2)

Cleaner Pass

31

App 1 App 2

n candidate segments (n = 2)

n - 1 survivor segments (n = 2)

Cleaner Pass

32

App 1 App 2

n candidate segments (n = 2)

n - 1 survivor segments (n = 2)

1 free segment

Cleaner Pass (n = 4): Twice the Work

33

App 1 App 2

4 candidate segments (n = 4)

3 survivor segments (n = 4)

1 free segment

Application Need: How Far is Memory
Allocation from Target Memory?

34

App 1 App 2

need(app) =
targetMemory(app)

actualMemory(app)

Log segments

Log Head

Within Each Application, Evict by Rank

35

App 1 App 2

7 155 4 0 8312

Log segments

1

Log Head

• To implement LRU: rank = last access time

Cleaning: Max Need and then Max Rank

36

Rank 1 Rank 0Rank 2 Rank 3

Need

App 1 0.8

App 2 1.4

App 3 0.9

Max Need?
Max Rank?

n segments n-1 segments

Cleaning: Max Need and then Max Rank

37

Rank 1 Rank 0 Rank 3

Need

App 1 0.8

App 2 1.4

App 3 0.9

Max Need?  App 2
Max Rank?

n segments n-1 segments

Rank 2

Cleaning: Max Need and then Max Rank

38

Rank 1 Rank 0 Rank 3

Need

App 1 0.8

App 2 1.4

App 3 0.9

Max Need?  App 2
Max Rank?  Rank 2

n segments n-1 segments

Rank 2

Cleaning: Max Need and then Max Rank

39

Rank 1 Rank 0 Rank 3

Need

App 1 0.9

App 2 0.8

App 3 1.2

Max Need?
Max Rank?

n segments n-1 segments

Rank 2

Cleaning: Max Need and then Max Rank

40

Rank 1 Rank 0 Rank 3

Need

App 1 0.9

App 2 0.8

App 3 1.2

Max Need?  App 3
Max Rank?

n segments n-1 segments

Rank 2

Cleaning: Max Need and then Max Rank

41

Rank 1 Rank 0 Rank 3

Need

App 1 0.9

App 2 0.8

App 3 1.2

Max Need?  App 3
Max Rank?  Rank 1

n segments n-1 segments

Rank 2

Trading Off Eviction Accuracy and Cleaning Cost

• Eviction accuracy is determined by n
• For example: rank = time of last access

• When n  # segments: ideal LRU

• Intuition: n is similar to cache associativity

• CPU consumption is determined by n

42

Trading Off Eviction Accuracy and Cleaning Cost

• Eviction accuracy is determined by n
• For example: rank = time of last access

• When n ∞: ideal LRU

• Intuition: n is similar to cache associativity

• CPU consumption is determined by n

43

“In practice Memcached is never CPU-bound in our
data centers. Increasing CPU to improve the hit rate
would be a good trade off.”

- Nathan Bronson, Facebook

Implementation
• Implemented in C++ on top of Memcached

• Reuse Memcached’s hash table, transport,
request processing

• Implemented log-structured memory
allocator

44

Partitioned vs. Memshare

45

Application Hit Rate Partitioned Hit Rate Memshare
(50% Reserved)

Combined 87.8% 89.2%

A 97.6% 99.4%

B 98.8% 98.8%

C 30.1% 34.5%

Reserved vs. Pooled Behavior

46

Combined Hit Rates
90.2% 89.2% 88.8%

App B App C

State-of-the-art Hit rate

47

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Application

H
it
 R

a
te

 (
%

)

Memcached

Memshare (75% Reserved)

• Misses reduced by 40%

• Combined hit rate increase: 6% (85%  91%)

State-of-the-art Hit Rate Even for Single Tenant Applications

48

Policy Memcached Memshare (100% Reserved)

Average
Single Tenant
Hit Rate

88.3% 95.5%

Cleaning Overhead is Minimal

49

0

2

4

6

8

10

88.00%

88.50%

89.00%

89.50%

90.00%

90.50%

91.00%

1 10 20 40 60 80 100

MB/s

n (number of cleaning candidate segments)

Hit rate Memory Bandwidth

0

2

4

6

8

10

88.00%

88.50%

89.00%

89.50%

90.00%

90.50%

91.00%

1 10 20 40 60 80 100

MB/s

n (number of cleaning candidate segments)

Hit rate Memory Bandwidth

Cleaning Overhead is Minimal

50

Modern
servers have
10GB/s or
more!

Related Work
• Optimizing memory allocation using shadow

queues
• Cliffhanger [Cidon 2016]

• Log-structured single-tenant key-value stores
• RAMCloud [Rumble 2014] and MICA [Lim 2014]

• Taxing idle memory
• ESX Server [Waldspurger 2002]

51

Summary
• First multi-tenant key-value cache that:
• Optimizes share for highest hit rate

• Provides minimal guarantees

• Novel log-structured design
• Use cleaner as enforcer

52

Appendix

53

Idle Tax for Selfish Applications
• Some sharing models do not support pooled memory, each

application is selfish
• For example: Memcachier’s Cache-as-a-Service

• Idle tax: reserved memory can be reassigned if idle

• Tax rate: determines portion of idle memory that can be
reassigned

• If all memory is active: target memory = reserved memory

54

Partitioned vs. Idle Tax

55

Application Hit Rate Partitioned Hit Rate Memshare
Idle Tax

Combined 87.8% 88.8%

A 97.6% 99.4%

B 98.8% 98.6%

C 30.1% 31.3%

State-of-the-art Hit rate

56

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Memcached Cliffhanger Memshare (75% Reserved)

Combined Hit Rate Miss Reduction vs. Memcached

Nearly Identical Latency

57

