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Cache is 100X Faster Than Database
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Web Server

100 us

10 ms



Cache Hit Rate Drives Cloud Performance

• Small improvements to cache hit rate 
make big difference:

• At 98% cache hit rate:
• +1% hit rate  35% speedup

• Facebook study [Atikoglu ’12]
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Static Partitioning  Low Hit Rates
• Cache providers statically partition their 

memory among applications

• Examples:
• Facebook
• Amazon Elasticache
• Memcachier
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Partitioned Memory Over Time

5

Static Partition No Partition
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Partitioned vs No Partition Hit Rates

Application Hit Rate Partitioned Hit Rate No Partition

Combined 87.8% 88.8%

A 97.6% 96.6%

B 98.8% 99.1%

C 30.1% 39.2%
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Partitioned Memory: Pros and Cons

• Disadvantages:
• Lower hit rate due to low utilization
• Higher TCO

• Advantages:
• Isolated performance and predictable hit rate
• “Fairness”: customers get what they pay for
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Memshare: the Best of Both Worlds

• Optimize memory allocation to maximize 
overall hit rate

• While providing minimal guaranteed 
memory allocation and performance 
isolation
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Multi-tenant Cache Design Challenges

1. Decide application memory allocation 
to optimize hit rate

2. Enforce memory allocation among 
applications
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Estimate Hit Rate Curve Gradient to Optimize Hit Rate
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Estimate Hit Rate Curve Gradient to Optimize Hit Rate
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Estimating Hit Rate Gradient
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• Track access frequency to 
recently evicted objects to 
determine gradient at working 
point

• Can be further improved with 
full hit rate curve estimation 

• SHARDS [Waldspurger 2015, 2017]

• AET [Hu 2016]



Multi-tenant Cache Design Challenges

1. Decide application memory allocation to 
optimize hit rate

2. Enforce memory allocation among 
applications
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Multi-tenant Cache Design Challenges

1. Decide application memory allocation to 
optimize hit rate

2. Enforce memory allocation among 
applications
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Not so simple



Slab Allocation Primer
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Memcached Server

App 1 App 2
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Memcached Server

Slab Allocation Primer
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LRU Queues

App 1 App 2



Goal: Move 4KB from App 2 to App 1
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Memcached Server

App 1 App 2



Goal: Move 4KB from App 2 to App 1
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• Problems:
• Need to evict 1MB
• Contains many small objects, 

some are hot

• App 1 can only use extra 
space for objects of 
certain size

Memcached Server

App 1 App 2



Goal: Move 4KB from App 2 to App 1
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• Problems:
• Need to evict 1MB
• Contains many small objects, 

some are hot

• App 1 can only use extra 
space for objects of 
certain size

Problematic even for one application, see Cliffhanger [Cidon 
2016]

Memcached Server

App 1 App 2



Instead of Slabs: Log-structured Memory
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Log segments

Log Head



Instead of Slabs: Log-structured Memory
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Log segments

Log Head

Newly written object



Instead of Slabs: Log-structured Memory
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Applications are Physically Intermixed
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Log segments

Log Head

App 1 App 2



Memshare’s Sharing Model
• Reserved Memory: guaranteed static memory

• Pooled Memory: application’s share of pooled memory

• Target Memory = Reserved Memory + Pooled Memory
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Cleaning Priority Determines Eviction Priority

• Q: When does Memshare evict?

• A: Newly written objects evict old objects, but 
not in critical path

• Cleaner keeps 1% of cache empty

• Cleaner tries to enforce actual memory allocation to be 
equal to Target Memory
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Cleaner Pass
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App 1 App 2

n candidate segments (n = 2)

n - 1 survivor segments (n = 2)



Cleaner Pass
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Cleaner Pass
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Cleaner Pass
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Cleaner Pass
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Cleaner Pass
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App 1 App 2

n candidate segments (n = 2)

n - 1 survivor segments (n = 2)

1 free segment



Cleaner Pass (n = 4): Twice the Work
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App 1 App 2

4 candidate segments (n = 4)

3 survivor segments (n = 4)

1 free segment



Application Need: How Far is Memory 
Allocation from Target Memory?
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App 1 App 2

need(app) =
targetMemory(app)

actualMemory(app)

Log segments

Log Head



Within Each Application, Evict by Rank
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App 1 App 2

7 155 4 0 8312

Log segments

1

Log Head

• To implement LRU: rank = last access time



Cleaning: Max Need and then Max Rank
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Rank 1 Rank 0Rank 2 Rank 3
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App 1 0.8
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Cleaning: Max Need and then Max Rank
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Cleaning: Max Need and then Max Rank
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Cleaning: Max Need and then Max Rank
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Cleaning: Max Need and then Max Rank
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Cleaning: Max Need and then Max Rank
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Rank 1 Rank 0 Rank 3

Need

App 1 0.9

App 2 0.8

App 3 1.2

Max Need?  App 3
Max Rank?  Rank 1
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Rank 2



Trading Off Eviction Accuracy and Cleaning Cost

• Eviction accuracy is determined by n
• For example: rank = time of last access

• When n  # segments: ideal LRU

• Intuition: n is similar to cache associativity

• CPU consumption is determined by n
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Trading Off Eviction Accuracy and Cleaning Cost

• Eviction accuracy is determined by n
• For example: rank = time of last access

• When n ∞: ideal LRU

• Intuition: n is similar to cache associativity

• CPU consumption is determined by n
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“In practice Memcached is never CPU-bound in our 
data centers. Increasing CPU to improve the hit rate 
would be a good trade off.”

- Nathan Bronson, Facebook



Implementation
• Implemented in C++ on top of Memcached

• Reuse Memcached’s hash table, transport, 
request processing

• Implemented log-structured memory 
allocator
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Partitioned vs. Memshare
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Application Hit Rate Partitioned Hit Rate Memshare
(50% Reserved)

Combined 87.8% 89.2%

A 97.6% 99.4%

B 98.8% 98.8%

C 30.1% 34.5%



Reserved vs. Pooled Behavior
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Combined Hit Rates
90.2% 89.2% 88.8%

App B App C



State-of-the-art Hit rate
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• Misses reduced by 40%

• Combined hit rate increase: 6% (85%  91%)



State-of-the-art Hit Rate Even for Single Tenant Applications
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Policy Memcached Memshare (100% Reserved)

Average 
Single Tenant
Hit Rate

88.3% 95.5%



Cleaning Overhead is Minimal
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Modern 
servers have 
10GB/s or 
more!



Related Work
• Optimizing memory allocation using shadow 

queues
• Cliffhanger [Cidon 2016]

• Log-structured single-tenant key-value stores
• RAMCloud [Rumble 2014] and MICA [Lim 2014]

• Taxing idle memory
• ESX Server [Waldspurger 2002]
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Summary
• First multi-tenant key-value cache that:
• Optimizes share for highest hit rate

• Provides minimal guarantees

• Novel log-structured design
• Use cleaner as enforcer
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Appendix
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Idle Tax for Selfish Applications
• Some sharing models do not support pooled memory, each 

application is selfish
• For example: Memcachier’s Cache-as-a-Service

• Idle tax: reserved memory can be reassigned if idle

• Tax rate: determines portion of idle memory that can be 
reassigned

• If all memory is active: target memory = reserved memory
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Partitioned vs. Idle Tax
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Application Hit Rate Partitioned Hit Rate Memshare
Idle Tax

Combined 87.8% 88.8%

A 97.6% 99.4%

B 98.8% 98.6%

C 30.1% 31.3%



State-of-the-art Hit rate
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Nearly Identical Latency
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