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Resource-Harvesting Datacenters
• Datacenters are under-utilized 

• Provisioned for peak load, low tail latency 
• Harvest spare resources 

• Co-locate services + batch jobs [Zhang, OSDI’16] 

• Enable datacenter-wide harvesting 
• Scale distributed file systems
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Scaling Distributed File Systems
• More storage capacity demands 

• Need bigger file system installations 
• Limitations to horizontal scaling 

• Bottleneck at centralized components 
•Centralized metadata manager 

• Manages namespace and blocks 
• Simplifies design and maintenance 
• Saturation: 4000 servers, ~40k reqs/sec
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Throughput vs Latency



• Primary Tenants (PTs) own servers 
• Interactive services (e.g., Bing) are PTs 

• Harvest resources from PTs 
• Avoid performance impact to the PT 

• Challenges for distributed file systems

Resource-Harvesting Challenges
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• Place replicas across PTs [Zhang,OSDI’16] 
• Need diversity of PT servers in filesystem



Scaling Technique #1: ViewFS
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• Partition of namespace on a subcluster 
• Mitigate metadata manager bottleneck 
• Users manually place data 

• Unbalanced subclusters 
• Complex rebalance 

• Need global view of the namespace, 
automated management 
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• Single cluster with multiple strongly 
consistent metadata managers 

• Global view of the namespace 
• More complex 
• No isolation from bugs or failures 

• Need small independent subclusters 
for isolation [Verma, EuroSys’15]

Scaling Technique #2: Multiple Metadata Managers
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1. Scale file systems to entire datacenter 
• Run independent subclusters → isolation 
• Federate subclusters transparently → global namespace 

2. Enable resource-harvesting 
• Promote behavioral diversity → improve durability and availability 

3. Good performance for users 
• Balance load and capacity
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Goals



Our Solution: Datacenter-Harvesting File System
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Goal #1: Transparent Scaling of File Systems
• State Store 

• Mount table: path → subcluster (SC) 
• Access load and capacity metrics 
• Router and rebalancer state 

• Routers 
• Expose global namespace 
• Consult state store for path → sub cluster 
• Cache path resolutions
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Goal #2: Enable Resource Harvesting
• Provide high availability and durability  

• Exploit behavioral diversity [Zhang,OSDI’16]
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Manual assignment

Diversity in subclusters 
(# of Primary Tenants)

Primary
Tenant• Manual: Primary Tenant → SC 

• Less diversity in subclusters

• Consistent hashing: racks → SC 
• Randomization to promote diversity 
• Promote network locality (racks → SC)  
• Reduce data movement on SC add/remove

Consistent hashing



Goal #3: Ensure Good Performance for Users

• Rebalancer as a minimization problem 
• Used capacity (< 80% of available capacity) 
• Access load (< 40k reqs/sec over a 5 minute period) 
• Amount of data moved for rebalancing 
• Mount table size
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Goal #3: Ensure Good Performance for Users
SC1: 8 TB, 60k reqs/sec 
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SC1: 4 TB, 35k reqs/sec 
SC3: 6 TB, 30k reqs/sec

Goal #3: Ensure Good Performance for Users
SC1: 8 TB, 60k reqs/sec 

• Rebalancer as a minimization problem 
• Used capacity (< 80% of available capacity) 
• Access load (< 40k reqs/sec over a 5 minute period) 
• Amount of data moved for rebalancing 
• Mount table size
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Implementation



• Datacenter-Harvesting HDFS (DH-HDFS) 
• Implement federation architecture over HDFS 
• Diversity-aware replica placement 
• Run independent instances in subclusters
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Implementation

Router r

State Store
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• Load balancing for Routers
• Zookeeper for State Store
• Rebalancer as a MapReduce job



• Real deployment 
• 4k servers divided into 4 subclusters 
• Deployment in production: 30k servers across 4 datacenters 

• Large-scale simulation 
• Traces from production datacenters at Microsoft 
• Simulate full datacenters for 6 months 

• HDFS trace from Yahoo! 
• 700k files and 4 million accesses

13

Evaluation



• Baseline system: Groups of primary tenants → subclusters 
• Spectrum of primary tenant CPU utilization: low, mid and high 
• Significantly higher availability with DH-HDFS 
• Improvement in data durability (results in paper)
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Real Deployment: Router Performance

• Worst-case scenario: metadata-only operations workload 
• Block read latencies dominate in real-world workloads 
• Negligible router overhead in real workloads
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Real Deployment: Router Performance

• Worst-case scenario: metadata-only operations workload 
• Block read latencies dominate in real-world workloads 
• Negligible router overhead in real workloads

170k req/sec

150k req/sec
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Real Deployment: Rebalancer Performance

• 13 TB data moved to balance subcluster 0 
• Average rebalance time: 6 mins 

• 100 ms to determine data to move 
• Primary tenant activity impacts data migration time (up to 4x)
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• 30k servers spread across 4 datacenter 
• Bootstrapping server → subcluster assignment 

• Switch to consistent hashing caused massive reshuffling of servers 
• Restrict movement till servers are re-imaged or decommissioned 

• Spread large data across subclusters 
• Users wanted data of batch jobs in a single folder 
• Create special folders with files distributed across subclusters 

• More lessons in the paper
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Lessons from Production Deployment



• Scale file systems to entire datacenter 
• Datacenter-Harvesting HDFS 

• Runs independent subclusters → isolation 
• Federates subclusters transparently → global namespace 
• Higher durability and availability on harvested resources 
• Better file access performance via rebalancing 

• Deployed in production datacenters 
• 30k servers spread across 4 datacenters

18

Conclusion



• Thanks!

19

Questions?


