
Scaling Distributed Filesystems in
Resource-Harvesting Datacenters

Pulkit A. Misra, Íñigo Goiri, Jason Kace, Ricardo Bianchini

1

Resource-Harvesting Datacenters
• Datacenters are under-utilized

• Provisioned for peak load, low tail latency
• Harvest spare resources

• Co-locate services + batch jobs [Zhang, OSDI’16]

• Enable datacenter-wide harvesting
• Scale distributed file systems

2

Server utilization distribution
of a Google cluster

Scaling Distributed File Systems
• More storage capacity demands

• Need bigger file system installations
• Limitations to horizontal scaling

• Bottleneck at centralized components
•Centralized metadata manager

• Manages namespace and blocks
• Simplifies design and maintenance
• Saturation: 4000 servers, ~40k reqs/sec

3

Throughput vs Latency

• Primary Tenants (PTs) own servers
• Interactive services (e.g., Bing) are PTs

• Harvest resources from PTs
• Avoid performance impact to the PT

• Challenges for distributed file systems

Resource-Harvesting Challenges

4

• Primary Tenants (PTs) own servers
• Interactive services (e.g., Bing) are PTs

• Harvest resources from PTs
• Avoid performance impact to the PT

• Challenges for distributed file systems

Resource-Harvesting Challenges

4

Time

PT
 C

PU
 U

ti
liz

at
io

n Busy
Threshold

• Busy servers fail accesses → lower availability

• Primary Tenants (PTs) own servers
• Interactive services (e.g., Bing) are PTs

• Harvest resources from PTs
• Avoid performance impact to the PT

• Challenges for distributed file systems

Resource-Harvesting Challenges

4

Time

PT
 C

PU
 U

ti
liz

at
io

n Busy
Threshold

• Busy servers fail accesses → lower availability
• Re-image disks → lower durability

• Primary Tenants (PTs) own servers
• Interactive services (e.g., Bing) are PTs

• Harvest resources from PTs
• Avoid performance impact to the PT

• Challenges for distributed file systems

Resource-Harvesting Challenges

4

Time

PT
 C

PU
 U

ti
liz

at
io

n Busy
Threshold

• Busy servers fail accesses → lower availability
• Re-image disks → lower durability

• Place replicas across PTs [Zhang,OSDI’16]
• Need diversity of PT servers in filesystem

Scaling Technique #1: ViewFS

5

• Partition of namespace on a subcluster
• Mitigate metadata manager bottleneck
• Users manually place data

• Unbalanced subclusters
• Complex rebalance

• Need global view of the namespace,
automated management

Metadata
Manager

Storage servers

Subcluster 1

Metadata
Manager

Storage servers

Subcluster s

/apps/u
se

r

• Single cluster with multiple strongly
consistent metadata managers

• Global view of the namespace
• More complex
• No isolation from bugs or failures

• Need small independent subclusters
for isolation [Verma, EuroSys’15]

Scaling Technique #2: Multiple Metadata Managers

6

Storage servers

Metadata
Managers

1. Scale file systems to entire datacenter
• Run independent subclusters → isolation
• Federate subclusters transparently → global namespace

2. Enable resource-harvesting
• Promote behavioral diversity → improve durability and availability

3. Good performance for users
• Balance load and capacity

7

Goals

Our Solution: Datacenter-Harvesting File System

8

Our Solution: Datacenter-Harvesting File System

8

Metadata
manager

Storage servers

Subcluster sMetadata
manager

Storage servers

Subcluster 1

Our Solution: Datacenter-Harvesting File System

8

Metadata
manager

Storage servers

Subcluster sMetadata
manager

Storage servers

Subcluster 1

Router 1 Router r

Our Solution: Datacenter-Harvesting File System

8

Metadata
manager

Storage servers

Subcluster sMetadata
manager

Storage servers

Subcluster 1

Router 1 Router r

State Store

Our Solution: Datacenter-Harvesting File System

8

Metadata
manager

Storage servers

Subcluster sMetadata
manager

Storage servers

Subcluster 1

Router 1 Router r

State Store Rebalancer

Our Solution: Datacenter-Harvesting File System

8

Metadata
manager

Storage servers

Subcluster sMetadata
manager

Storage servers

Subcluster 1

Router 1 Router r

State Store Rebalancer

Our Solution: Datacenter-Harvesting File System

8

Metadata
manager

Storage servers

Subcluster sMetadata
manager

Storage servers

Subcluster 1

Router 1 Router r

State Store Rebalancer

/a
pp

/f
ile

.t
xt

1

Our Solution: Datacenter-Harvesting File System

8

Metadata
manager

Storage servers

Subcluster sMetadata
manager

Storage servers

Subcluster 1

Router 1 Router r

State Store Rebalancer

/a
pp

/f
ile

.t
xt

SC s

1

2

Our Solution: Datacenter-Harvesting File System

8

Metadata
manager

Storage servers

Subcluster sMetadata
manager

Storage servers

Subcluster 1

Router 1 Router r

State Store Rebalancer

/a
pp

/f
ile

.t
xt

SC s

/app/file.txt
Storage server 1

1

2

3

Our Solution: Datacenter-Harvesting File System

8

Metadata
manager

Storage servers

Subcluster sMetadata
manager

Storage servers

Subcluster 1

Router 1 Router r

State Store Rebalancer

/a
pp

/f
ile

.t
xt

SC s

/app/file.txt
Storage server 1

1

2

3

4

Our Solution: Datacenter-Harvesting File System

8

Metadata
manager

Storage servers

Subcluster sMetadata
manager

Storage servers

Subcluster 1

Router 1 Router r

State Store Rebalancer

/a
pp

/f
ile

.t
xt

SC s

/app/file.txt
Storage server 1

read

1

2

3

4

5

Goal #1: Transparent Scaling of File Systems
• State Store

• Mount table: path → subcluster (SC)
• Access load and capacity metrics
• Router and rebalancer state

• Routers
• Expose global namespace
• Consult state store for path → sub cluster
• Cache path resolutions

9

user
(1 TB, 15k)

apps
(4 TB, 30k)

user_1
(2 TB, 15k)

user_2
(2 TB, 10k)

/
(5 TB, 15k)

Mount table

SC0 SC1 SC2

Goal #2: Enable Resource Harvesting
• Provide high availability and durability

• Exploit behavioral diversity [Zhang,OSDI’16]

10

Goal #2: Enable Resource Harvesting
• Provide high availability and durability

• Exploit behavioral diversity [Zhang,OSDI’16]

10

Manual assignment

Diversity in subclusters
(# of Primary Tenants)

Primary
Tenant• Manual: Primary Tenant → SC

• Less diversity in subclusters

Goal #2: Enable Resource Harvesting
• Provide high availability and durability

• Exploit behavioral diversity [Zhang,OSDI’16]

10

Manual assignment

Diversity in subclusters
(# of Primary Tenants)

Primary
Tenant• Manual: Primary Tenant → SC

• Less diversity in subclusters

• Consistent hashing: racks → SC
• Randomization to promote diversity
• Promote network locality (racks → SC)
• Reduce data movement on SC add/remove

Consistent hashing

Goal #3: Ensure Good Performance for Users

• Rebalancer as a minimization problem
• Used capacity (< 80% of available capacity)
• Access load (< 40k reqs/sec over a 5 minute period)
• Amount of data moved for rebalancing
• Mount table size

11

Goal #3: Ensure Good Performance for Users

• Rebalancer as a minimization problem
• Used capacity (< 80% of available capacity)
• Access load (< 40k reqs/sec over a 5 minute period)
• Amount of data moved for rebalancing
• Mount table size

11

logs
(1 TB, 15k)

apps
(4 TB, 35k)

user
(2 TB, 5k)

user_1
(2 TB, 15k)

user_2
(2 TB, 10k)

/
(5 TB, 15k)

Goal #3: Ensure Good Performance for Users
SC1: 8 TB, 60k reqs/sec

• Rebalancer as a minimization problem
• Used capacity (< 80% of available capacity)
• Access load (< 40k reqs/sec over a 5 minute period)
• Amount of data moved for rebalancing
• Mount table size

11

logs
(1 TB, 15k)

apps
(4 TB, 35k)

user
(2 TB, 5k)

user_1
(2 TB, 15k)

user_2
(2 TB, 10k)

/
(5 TB, 15k)

SC1 overloaded

Goal #3: Ensure Good Performance for Users
SC1: 8 TB, 60k reqs/sec

• Rebalancer as a minimization problem
• Used capacity (< 80% of available capacity)
• Access load (< 40k reqs/sec over a 5 minute period)
• Amount of data moved for rebalancing
• Mount table size

11

logs
(1 TB, 15k)

apps
(4 TB, 35k)

user
(2 TB, 5k)

user_1
(2 TB, 15k)

user_2
(2 TB, 10k)

/
(5 TB, 15k)

Move to SC3

SC1: 4 TB, 35k reqs/sec
SC3: 6 TB, 30k reqs/sec

Goal #3: Ensure Good Performance for Users
SC1: 8 TB, 60k reqs/sec

• Rebalancer as a minimization problem
• Used capacity (< 80% of available capacity)
• Access load (< 40k reqs/sec over a 5 minute period)
• Amount of data moved for rebalancing
• Mount table size

11

logs
(1 TB, 15k)

apps
(4 TB, 35k)

user
(6 TB, 30k)

/
(5 TB, 15k)

12

Implementation

• Datacenter-Harvesting HDFS (DH-HDFS)
• Implement federation architecture over HDFS
• Diversity-aware replica placement
• Run independent instances in subclusters

12

Implementation

Subcluster s

• Datacenter-Harvesting HDFS (DH-HDFS)
• Implement federation architecture over HDFS
• Diversity-aware replica placement
• Run independent instances in subclusters

12

Implementation

Router r

Subcluster s

• Load balancing for Routers

• Datacenter-Harvesting HDFS (DH-HDFS)
• Implement federation architecture over HDFS
• Diversity-aware replica placement
• Run independent instances in subclusters

12

Implementation

Router r

State Store

Subcluster s

• Load balancing for Routers
• Zookeeper for State Store

• Datacenter-Harvesting HDFS (DH-HDFS)
• Implement federation architecture over HDFS
• Diversity-aware replica placement
• Run independent instances in subclusters

12

Implementation

Router r

State Store

Subcluster s

Rebalancer

• Load balancing for Routers
• Zookeeper for State Store
• Rebalancer as a MapReduce job

• Real deployment
• 4k servers divided into 4 subclusters
• Deployment in production: 30k servers across 4 datacenters

• Large-scale simulation
• Traces from production datacenters at Microsoft
• Simulate full datacenters for 6 months

• HDFS trace from Yahoo!
• 700k files and 4 million accesses

13

Evaluation

• Baseline system: Groups of primary tenants → subclusters
• Spectrum of primary tenant CPU utilization: low, mid and high
• Significantly higher availability with DH-HDFS
• Improvement in data durability (results in paper)

14

Simulation: Availability (% Successful Accesses)

• Baseline system: Groups of primary tenants → subclusters
• Spectrum of primary tenant CPU utilization: low, mid and high
• Significantly higher availability with DH-HDFS
• Improvement in data durability (results in paper)

14

Simulation: Availability (% Successful Accesses)

Low
utilization

(up to 25%)

Lower is
better

• Baseline system: Groups of primary tenants → subclusters
• Spectrum of primary tenant CPU utilization: low, mid and high
• Significantly higher availability with DH-HDFS
• Improvement in data durability (results in paper)

14

Simulation: Availability (% Successful Accesses)

105x
Mid

utilization
(up to 50%)

Lower is
better

• Baseline system: Groups of primary tenants → subclusters
• Spectrum of primary tenant CPU utilization: low, mid and high
• Significantly higher availability with DH-HDFS
• Improvement in data durability (results in paper)

14

Simulation: Availability (% Successful Accesses)

104x
High

utilization
(up to 75%)

Lower is
better

15

Real Deployment: Router Performance

• Worst-case scenario: metadata-only operations workload
• Block read latencies dominate in real-world workloads
• Negligible router overhead in real workloads

15

Real Deployment: Router Performance

• Worst-case scenario: metadata-only operations workload
• Block read latencies dominate in real-world workloads
• Negligible router overhead in real workloads

4x throughput

15

Real Deployment: Router Performance

• Worst-case scenario: metadata-only operations workload
• Block read latencies dominate in real-world workloads
• Negligible router overhead in real workloads

3ms

15

Real Deployment: Router Performance

• Worst-case scenario: metadata-only operations workload
• Block read latencies dominate in real-world workloads
• Negligible router overhead in real workloads

170k req/sec

150k req/sec

16

Real Deployment: Rebalancer Performance

• 13 TB data moved to balance subcluster 0
• Average rebalance time: 6 mins

• 100 ms to determine data to move
• Primary tenant activity impacts data migration time (up to 4x)

16

Real Deployment: Rebalancer Performance

• 13 TB data moved to balance subcluster 0
• Average rebalance time: 6 mins

• 100 ms to determine data to move
• Primary tenant activity impacts data migration time (up to 4x)

SC0
overloaded

watermark: 2000 reqs/s

• 30k servers spread across 4 datacenter
• Bootstrapping server → subcluster assignment

• Switch to consistent hashing caused massive reshuffling of servers
• Restrict movement till servers are re-imaged or decommissioned

• Spread large data across subclusters
• Users wanted data of batch jobs in a single folder
• Create special folders with files distributed across subclusters

• More lessons in the paper

17

Lessons from Production Deployment

• Scale file systems to entire datacenter
• Datacenter-Harvesting HDFS

• Runs independent subclusters → isolation
• Federates subclusters transparently → global namespace
• Higher durability and availability on harvested resources
• Better file access performance via rebalancing

• Deployed in production datacenters
• 30k servers spread across 4 datacenters

18

Conclusion

• Thanks!

19

Questions?

