
Carnegie Mellon University

Carnegie Mellon
Parallel Data Laboratory

* UC Berkeley

Tributary: spot-dancing for 
elastic services with latency 

SLOs
Aaron Harlap, Andrew Chung,  

Alexey Tumanov*, Greg Ganger, Phil Gibbons



Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu/ Aaron Harlap © July 18

(a) Berkeley Periodic[12] (b) ClarkNet Periodic[12] (c) WITS Large Variation[18] (d) WCup98 Slow Spike[12]
Figure 4: Traces used in system evaluation.

AutoScale Smart AutoScale Tributary

(a) Reactive
AutoScale Smart AutoScale Tributary

(b) Predictive-LR
AutoScale Smart AutoScale Tributary

(c) Predictive-MWA
Figure 5: Cost savings (red) and percentage of “slow” requests (blue) for the ClarkNet trace.

5.2 Scaling Policies Evaluated

We implement three popular scaling policies: Reactive, Predictive Moving Window Average (MWA), and
Predictive Linear Regression (LR) to evaluate our system. In all three policies, the utility function implemented
is linear with respect to the amount recommended by the scaling policy. We are able to make this assumption
since our workload characteristic is embarrassingly-parallel — if a workload exhibits different scaling
characteristics, a different utility function generator can be implemented.

The Reactive Scaling Policy scales out immediately when demand reported by the MM is greater than
what the available resources are able to handle. It scales in slowly (only after three minutes of low demand),
as recommended by Gandhi et al. [15], to prevent premature scale-in in case the demand fluctuates widely in
a short period of time. Tributary’s smart termination mechanism helps with the Reactive Scaling Policy’s
strategy of scaling in slowly. With smart termination, Tributary keeps a resource available if the resource has
not yet been revoked or met the end of its billing period even if the scaling policy recommends a scale in.

The Predictive-MWA Scaling Policy maintains a sliding window of a fixed size, with each window entry
consisting of the number of requests received in each monitoring period. The policy takes the average of the
window entries to predict the number of requests on the next monitoring period. The policy then adjusts the
utility and scaling functions according to the predicted number of requests, and reports the updated functions
to the ResMgr to scale in expectation of future requests. The Predictive-LR Scaling Policy also maintains
a sliding window of a fixed size, but rather than using the average in the window for prediction, the policy
performs linear regression on data points in the window to estimate the expected number of requests in the
next monitoring period.

Our experiments show that regardless of the scaling policy used, Tributary beats its competitors in both
meeting the service latency target and the cost of operation.

5.3 Improvements with Tributary

This section evaluates Tributary’s ability to reduce cost and latency target misses. We compare Tributary to
three alternate resource acquisition approaches: using on-demand resources, using AWS AutoScale with spot
instances, and using Smart AutoScale.

AWS Autoscale. The default AWS AutoScale only supports the simplest reactive scaling policies. To
provide better comparison between approaches, we implement the AWS AutoScale resource acquisition
algorithm as closely as possible according to its documentation [2] and integrate it with Tributary to work with

12

Services with SLOs
• Time varying client 

workloads 
- handled with elastically 

sized resources 

• How are they sized? 
- decide how many 

resources are needed 

- add/release resources

!2

http://www.pdl.cmu.edu


Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu/ Aaron Harlap © July 18

Elastic Service Architecture

!3

Load Balancer

Scaling Policy Resource Manager

Resources

http://www.pdl.cmu.edu


Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu/ Aaron Harlap © July 18

Elastic Service Architecture

!3

Load Balancer

Scaling Policy Resource Manager

Resources

User Requests

http://www.pdl.cmu.edu


Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu/ Aaron Harlap © July 18

Elastic Service Architecture

!3

Load Balancer

Scaling Policy Resource Manager

Resources

User Requests Fwd Requests

http://www.pdl.cmu.edu


Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu/ Aaron Harlap © July 18

Elastic Service Architecture

!3

Load Balancer

Scaling Policy Resource Manager

Resources

User Requests Fwd Requests

Stats

http://www.pdl.cmu.edu


Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu/ Aaron Harlap © July 18

Elastic Service Architecture

!3

Load Balancer

Scaling Policy Resource Manager

Resources

User Requests Fwd Requests

Stats

How many resources currently needed

http://www.pdl.cmu.edu


Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu/ Aaron Harlap © July 18

Elastic Service Architecture

!3

Load Balancer

Scaling Policy Resource Manager

Resources

User Requests Fwd Requests

Stats

How many resources currently needed

Add  Remove

http://www.pdl.cmu.edu


Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu/ Aaron Harlap © July 18

Why Tributary?
• CSPs offer cheaper resources that come with 

potential of being taken away 
- GCE preemptible instances 

- AWS EC2 spot instances 

• Preemptions are bad for services w/ SLOs

!4

http://www.pdl.cmu.edu


Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu/ Aaron Harlap © July 18

Transient resources much cheaper
• Often 75-85% cheaper to use Spot Instances

!5

Jan 19 Jan 20 Jan 21 Jan 22 Jan 23 Jan 240

1

2

3

4

5

Date

Pr
ice

 p
er

 H
ou

r (
$)

 

 

On−Demand

http://www.pdl.cmu.edu


Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu/ Aaron Harlap © July 18

Transient resources much cheaper
• Often 75-85% cheaper to use Spot Instances

!5

Jan 19 Jan 20 Jan 21 Jan 22 Jan 23 Jan 240

1

2

3

4

5

Date

Pr
ice

 p
er

 H
ou

r (
$)

 

 

c4.xlarge
On−Demand

http://www.pdl.cmu.edu


Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu/ Aaron Harlap © July 18

Transient resources much cheaper
• Often 75-85% cheaper to use Spot Instances

!5

Jan 19 Jan 20 Jan 21 Jan 22 Jan 23 Jan 240

1

2

3

4

5

Date

Pr
ice

 p
er

 H
ou

r (
$)

 

 

c4.xlarge
On−Demand

Low Cost

http://www.pdl.cmu.edu


Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu/ Aaron Harlap © July 18

Spot Market Details
• Many different spot markets 

- each instance type, in each availability zone, in each 
datacenter 

- empirically, markets are uncorrelated 

• If pre-empted, Amazon issues refund 

- during first hour only 

• Aquire resource(machines) by specifying: 

- <spot market, bid price, number of machines>

!6

http://www.pdl.cmu.edu


Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu/ Aaron Harlap © July 18

Tributary Changes how we Aquire Resources

• Uses transient instead of reliable resources 
- while addressing bulk preemptions  

• Uses resource from multiple spot markets 
- predicts allocation P[preemption] 

- tracks inter-market correlations 

- maintains diverse resource buffer

!7

http://www.pdl.cmu.edu


Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu/ Aaron Harlap © July 18

Tributary Components
• Predicting resource reliability 

• Constructing resource footprint

!8

http://www.pdl.cmu.edu


Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu/ Aaron Harlap © July 18

Influencing P[preemption]
• User’s bids influence P[preemption] of spot instances 

- bid delta = user bid price - spot market price 

• Bigger Delta 

- lower P[preemption] and higher cost 

• Smaller Delta 

- higher P[preemption] and lower cost

!9

http://www.pdl.cmu.edu


Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu/ Aaron Harlap © July 18

Predicting P[preemption]
• Predict P[preemption] as a function of bid deltas 

• Extract features 
- calendrical 

- temporal 

• Plug features into LSTM Model 
- models EC2 as a sequence of events

!10

http://www.pdl.cmu.edu


Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu/ Aaron Harlap © July 18

Constructing the Resource Footprint

• Need to achieve capacity to satisfy SLO of 
client workload 

• Need sufficient diversity across markets 

While expected request capacity < SLO: 
Add resource that increases expected cost the least 
and increases request capacity the most.

!11

http://www.pdl.cmu.edu


Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu/ Aaron Harlap © July 18

Computing Expected Request Capacity
• Compute probability of exactly 0 - N resources not 

pre-empted 

• Accounts for spot market dependencies 

• Encourages diversity

!12

http://www.pdl.cmu.edu


Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu/ Aaron Harlap © July 18

Computing Expected Request Capacity
• Compute probability of exactly 0 - N resources not 

pre-empted 

• Accounts for spot market dependencies 

• Encourages diversity

!12

50%

http://www.pdl.cmu.edu


Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu/ Aaron Harlap © July 18

Computing Expected Request Capacity
• Compute probability of exactly 0 - N resources not 

pre-empted 

• Accounts for spot market dependencies 

• Encourages diversity

!12

50% 50%

http://www.pdl.cmu.edu


Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu/ Aaron Harlap © July 18

Computing Expected Request Capacity
• Compute probability of exactly 0 - N resources not 

pre-empted 

• Accounts for spot market dependencies 

• Encourages diversity

!12

50% 50%

1 * 0.5 + 0.5 * 0.5 = 0.75

http://www.pdl.cmu.edu


Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu/ Aaron Harlap © July 18

So Why Does this Work?
• Creates a diversified, oversized footprint 

- able to tolerate preemptions  

- little or no extra cost 

• Handles unexpected workload spikes 
- handled via oversized natural resource buffers  

!13

http://www.pdl.cmu.edu


Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu/ Aaron Harlap © July 18

Time for an Example

!14

6030

R
at

e 
of

 R
eq

ue
st

s

Time (min)
6030

R
at

e 
of

 R
eq

ue
st

s

Time (min)

 AutoScale Tributary

http://www.pdl.cmu.edu


Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu/ Aaron Harlap © July 18

Time for an Example

!15

Alloc B

Alloc C

R
at

e 
of

 R
eq

ue
st

s

Alloc A

Time (min)
6030

Alloc 2

R
at

e 
of

 R
eq

ue
st

s

Alloc 1

Time (min)
6030

 AutoScale Tributary

http://www.pdl.cmu.edu


Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu/ Aaron Harlap © July 18

Tributary Serves More Requests

!16

Alloc B

Alloc C

R
at

e 
of

 R
eq

ue
st

s

Alloc A

Alloc D

Time (min)
6030

Alloc 2

Alloc 3

R
at

e 
of

 R
eq

ue
st

s

Alloc 1

Time (min)

Alloc 3

6030

 AutoScale Tributary

http://www.pdl.cmu.edu


Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu/ Aaron Harlap © July 18

Request Rate Decreases

!17

Alloc B

Alloc C

R
at

e 
of

 R
eq

ue
st

s

Alloc A

Alloc D

Time (min)

Alloc C

6030

Alloc D

Alloc 2

Alloc 3

R
at

e 
of

 R
eq

ue
st

s

Alloc 1

Time (min)

Alloc 3

6030

 AutoScale Tributary

http://www.pdl.cmu.edu


Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu/ Aaron Harlap © July 18

Tributary’s Resources are Pre-empted

!18

Alloc B

Alloc C

R
at

e 
of

 R
eq

ue
st

s

Alloc A

Alloc D

Time (min)

Alloc C

6030

Alloc E

Alloc D

Alloc 2

Alloc 3

R
at

e 
of

 R
eq

ue
st

s

Alloc 1

Time (min)

Alloc 3

6030

 AutoScale Tributary

http://www.pdl.cmu.edu


Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu/ Aaron Harlap © July 18

Experimental Setup
• 4 Traces Evaluated 

- show Clarknet  

• 3 Scaling Policies 
- show reactive 

• Comparisons 

- Autoscale on spot 

- Autoscale+Buffer on spot 

- Tributary

!19

(a) Berkeley Periodic[12] (b) ClarkNet Periodic[12] (c) WITS Large Variation[18] (d) WCup98 Slow Spike[12]
Figure 4: Traces used in system evaluation.

AutoScale Smart AutoScale Tributary

(a) Reactive
AutoScale Smart AutoScale Tributary

(b) Predictive-LR
AutoScale Smart AutoScale Tributary

(c) Predictive-MWA
Figure 5: Cost savings (red) and percentage of “slow” requests (blue) for the ClarkNet trace.

5.2 Scaling Policies Evaluated

We implement three popular scaling policies: Reactive, Predictive Moving Window Average (MWA), and
Predictive Linear Regression (LR) to evaluate our system. In all three policies, the utility function implemented
is linear with respect to the amount recommended by the scaling policy. We are able to make this assumption
since our workload characteristic is embarrassingly-parallel — if a workload exhibits different scaling
characteristics, a different utility function generator can be implemented.

The Reactive Scaling Policy scales out immediately when demand reported by the MM is greater than
what the available resources are able to handle. It scales in slowly (only after three minutes of low demand),
as recommended by Gandhi et al. [15], to prevent premature scale-in in case the demand fluctuates widely in
a short period of time. Tributary’s smart termination mechanism helps with the Reactive Scaling Policy’s
strategy of scaling in slowly. With smart termination, Tributary keeps a resource available if the resource has
not yet been revoked or met the end of its billing period even if the scaling policy recommends a scale in.

The Predictive-MWA Scaling Policy maintains a sliding window of a fixed size, with each window entry
consisting of the number of requests received in each monitoring period. The policy takes the average of the
window entries to predict the number of requests on the next monitoring period. The policy then adjusts the
utility and scaling functions according to the predicted number of requests, and reports the updated functions
to the ResMgr to scale in expectation of future requests. The Predictive-LR Scaling Policy also maintains
a sliding window of a fixed size, but rather than using the average in the window for prediction, the policy
performs linear regression on data points in the window to estimate the expected number of requests in the
next monitoring period.

Our experiments show that regardless of the scaling policy used, Tributary beats its competitors in both
meeting the service latency target and the cost of operation.

5.3 Improvements with Tributary

This section evaluates Tributary’s ability to reduce cost and latency target misses. We compare Tributary to
three alternate resource acquisition approaches: using on-demand resources, using AWS AutoScale with spot
instances, and using Smart AutoScale.

AWS Autoscale. The default AWS AutoScale only supports the simplest reactive scaling policies. To
provide better comparison between approaches, we implement the AWS AutoScale resource acquisition
algorithm as closely as possible according to its documentation [2] and integrate it with Tributary to work with

12

http://www.pdl.cmu.edu


Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu/ Aaron Harlap © July 18

Comparing to AutoScale
• AWS AutoScale  

- AWS service that acquires cheapest spot instances

!20

0

5

10

15

20

25

30

35

40

45

AutoScale AutoScale+Buffer Tributary

C
o

s
t(

%
) 

N
o

r
m

a
li

z
e

d
 t

o
 O

n
-
D

e
m

a
n

a
d

Cost Compared to On-Demand

0

1

2

3

4

5

6

AutoScale AutoScale+Buffer Tributary

Sl
ow

 R
eq

ue
st

 P
er

ce
nt

ag
e

Percentage of Slow Requests

http://www.pdl.cmu.edu


Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu/ Aaron Harlap © July 18

Other Interesting Results
• Across 4 traces Tributary reduces cost by 47-62% 

• Outperformed recent research systems 
- ExoSphere [Sharma 2017] 

- Proteus [Harlap 2017] 

• Only ~50% of cost saving come from preemptions

!21

http://www.pdl.cmu.edu


Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu/ Aaron Harlap © July 18

Conclusion
• Provides reliable service using transient 

resources 

• Uses diversified buffers of resources 

• Reduces cost by ~85% over on-demand

!22

http://www.pdl.cmu.edu

