
Redesigning LSMs for Nonvolatile Memory
with NoveLSM

Sudarsun Kannan, Nitish Bhat*, Ada Gavrilovska*,

Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau

University of Wisconsin-Madison, Georgia Institute of Technology*

Key-Value Stores
Key-Value Stores

2

Keys Arbitrary Value

{red car, honda, john}

200

100

Widely used

LSM-based Key-Value Stores
Log-structured Merge Tree (LSM)

- Write optimized data structure used in key-value stores

Originally designed for slow hard drives

- In memory buffering, batched, and sequential writes to disk

- High write amplification

Several LSM implementations

- LevelDB (Google), RocksDB (Facebook), Cassandra

- SSD optimized LSMs WiscKey (FAST ‘16), VT-tree (FAST ‘13)

3

Moving Towards NVM Era

Fast byte-addressable and persistent NVM technologies expected soon

Hard Drives

H/W Lat: 7.1 ms 68 us 500ns - 2us 100ns

BW: 2.6 MB/s 250 MB/s 5-10 GB/s 64 GB/s

Persistence: Blocks Blocks Cache-line Cache-line

SSD NVM

4

DRAM

Adding NVM makes LSMs faster?

5

Why use LSMs in NVM?

– Expected to co-exist with block storage

– Rewriting production-level LSMs not easy!

Current LSMs are not designed to exploit storage byte-addressability

Our study shows significant software overheads

1. Serialization and deserialization cost

2. Compaction cost

3. Logging cost

4. Lack of read parallelism

Our Solution: NoveLSM

6

Use existing LSM and…

1. Reduce serialization – Persistent Skip List

2. Reduce compaction – Direct NVM mutability

3. Reduce logging cost – In-place commits

4. Improve parallelism – Read parallelism across levels

Evaluation Summary:

Evaluation with emulated NVM using benchmarks and application traces

NoveLSM reduces write latency by up to 3.8x and read latency by 2x

Orders of magnitude faster recovery

Introduction

Background on LevelDB

Motivation
- High serialization, compaction, and logging cost
- Lack of parallelism

NoveLSM Design
- Persistent memtable, NVM mutability, In-place commits
- Read parallelism

Evaluation

Conclusion

Outline

8

LSM-based LevelDB

Application

DRAM Memtable

DRAM Immutable

Put(37, val)

Level 0 Merge

Level 1 Merge

Storage Log
Head Tail

Level 2 Merge

On-disk log for recovering from failure
In-memory skip list to
buffer updates in memory

When buffer full, writes compacted to
storage and written sequentially

Each level is 10x larger
than previous level

String Sorted Tables (SST)

`

When a level is full, data moved to next level by merging

We study (and extend) LevelDB due to its wider use and simplicity

Put(23, val)

+∞

+∞

+∞

Head Tail

9

Write Operation

Application

DRAM Memtable

DRAM Immutable

Level 0

Level 1

Storage Log
Head Tail

+∞

+∞

+∞

Head Tail

+∞23

10

Write Operation

Application

DRAM Memtable

DRAM Immutable

Level 0

Level 1

Storage Log
23,value CHead Tail

Put(45, val)

+∞

+∞

+∞

Head Tail

+∞23

+∞45

11

Write Operation

Application

DRAM Memtable

DRAM Immutable

Put(37, val)

DRAM Memtable (FULL)

Level 0

Level 1

Storage Log
23,value CHead 45,value C Tail

12

Write Operation

Application

DRAM Memtable

DRAM Immutable

DRAM Memtable (FULL)

DRAM Immutable (FULL)

Initiate background
compaction

Level 0 Merge

Level 1 Merge

Storage Log
23,value CHead 45,value C Tail

+∞

+∞

+∞

Head Tail

+∞23

+∞45

+∞

+∞

+∞

Head Tail

+∞

+∞

Put(37, val)

13

Write Operation

Application

DRAM Memtable

DRAM Immutable

DRAM Memtable (FULL)

DRAM Immutable (FULL)

Initiate background
compaction

Level 0 Merge

Level 1 Merge

Storage Log
23,value CHead 45,value C Tail37,value C

+∞

+∞

+∞

Head Tail

+∞23

+∞45

+∞

+∞

+∞

Head Tail

+∞37

+∞

14

Read Operation

14

Application

DRAM Memtable

DRAM Immutable

Level 0

Level 1

Level 1
a 0 – 10

b 11 – 15

… 17

k 100

a 0 – 3
r 4 – 8

… ….

Range Blocks
d 12

a 5-60 1 2 3 ….

0 1 2 3 4 5 6 7

0 1 2 3 … … … … 100 101 …

Get (“107")

Search memtable

Search Immutable memtable

15

Read Operation

15

Application

DRAM Memtable

DRAM Immutable

Level 0

Level 1

Level 1
a 0 – 10

b 11 – 15

… 17

k 100

a 0 – 3
r 4 – 8

… ….

Range Blocks
d 12

a 5-60 1 2 3 ….

0 1 2 3 4 5 6 7

0 1 2 3 … … … … 100 101 …

Get (“107")

Search memtable

Search Immutable memtable

Index lookup

Index lookup

Index lookup

16

Read Operation

16

Application

DRAM Memtable

DRAM Immutable

Level 0

Level 1

Level 1
a 0 – 10

b 11 – 15

… 17

k 100

a 0 – 3
r 4 – 8

… ….

Range Blocks
d 12

a 5-60 1 2 3 ….

0 1 2 3 4 5 6 7

0 1 2 3 … … … … 100 101 …

Get (“107")

Search memtable

Search Immutable memtable

Index lookup

Index lookup

Index lookup

100
Deserialize

k,value

Introduction

Background on LevelDB

Motivation
- High serialization, compaction, and logging cost
- Lack of parallelism

NoveLSM Design
- Persistent memtable, NVM mutability, In-place commits
- Read parallelism

Evaluation

Conclusion

Outline

How do LSMs perform on NVM?

18

LevelDB: Use NVM instead of SSD for storing on-disk SSTable

Application

DRAM Memtable

DRAM Immutable

Level 0

Level 1
Level 2

.

.

.

Level K

SSDLevel 0

Level 1
Level 2

.

.

.

Level K

How do LSMs perform on NVM?

19

LevelDB: Use NVM instead of SSD for storing on-disk SSTable

Problem: No byte addressable commercial NVM
- Use DRAM and increase latency by 5x (delay writes)

- Use thermal throttling to reduce NVM bandwidth

Application

DRAM Memtable

DRAM Immutable

Level 0

Level 1
Level 2

.

.

.

Level K

NVMLevel 0

Level 1
Level 2

.

.

.

Level K

NVM Gains when Replacing SSD

20

Analyze with 4 KB value size and 16 GB total data size

Random write gains only 4x even with 80x faster NVM

Read latency gains less than 1.5x

0
20
40
60
80

100
120

Random Write Random Read

Sp
ee

du
p

fa
ct

or
 o

ve
r

SS
D

NVM hardware
LevelDB

21

Application

DRAM Memtable

DRAM Immutable

Put(37, val)

DRAM Memtable (FULL)

Level 0

Level 1

Initiate background compaction

+∞

+∞

+∞

Head Tail

+∞23

+∞45

1. High (De)Serialization Cost

22

Application

DRAM Memtable

DRAM Immutable

Put(37, val)

DRAM Memtable (FULL)

DRAM Immutable (FULL)

Level 0

Level 1

Initiate background compaction

+∞

+∞

+∞

Head Tail

+∞23

+∞45

1. High (De)Serialization Cost

23

Application

DRAM Memtable

DRAM ImmutableDRAM Immutable (FULL)

Level 1

Initiate background compaction

+∞

+∞

+∞

Head Tail

+∞

+∞

Block 0 Block 1

Serialization of in-memory data to SSTable storage blocks

DRAM Memtable (FULL)

Put(37, val)

1. High (De)Serialization Cost

1. High (De)Serialization Cost

24

Application

DRAM Memtable

DRAM ImmutableDRAM Immutable (FULL)

Level 1

Initiate background compaction

Block 0 Block 1

Serialization of in-memory data to SSTable storage blocks

Deserialization of block data to in-memory data during read

Read(45)

45
Deserialize

Block 1
+∞

+∞

+∞

Head Tail

+∞

+∞

DRAM Memtable (FULL)

25

Deserialization and its related data copy cost increases with value size

0

10

20

30

4 KB 8 KB 16 KB

La
te

nc
y

(m
ic

ro
s/

op
)

Deserialize

1. Deserialization Cost – Read Operation

+∞

+∞

+∞

Head Tail

+∞37

+∞64

Put(100, val)

2. High Write Compaction Cost

26

Application

Level 0 Merge

Level 1 Merge

DRAM MemtableDRAM Memtable (FULL)

DRAM Immutable (FULL)

Compaction not complete

Stall

Compaction time consuming and high overhead
- In-memory structures must be serialized to block format
- Can trigger chain compactions across lower levels

+∞

+∞

+∞

Head Tail

+∞37

2. High Write Compaction Cost

27

0

50

100

150

200

4K 8K 16K

La
te

nc
y

(m
ic

ro
s/

op
) Compaction

Compaction cost increases with value size

50% - 88% spent just waiting on compaction stall

+∞

+∞

+∞

Head Tail

Off: 75
+∞23

3. High Write Logging Cost

28

Application

DRAM Memtable

DRAM Immutable

Put(23, val)

23,value CHead Tail

Storage Log

Level 0

Level 1

Put(45, val)

+∞

+∞

+∞

Head Tail

+∞23

+∞45

3. High Write Logging Cost

29

Application

DRAM Memtable

DRAM Immutable

23,value CHead 45,value C Tail

Storage Log

Level 0

Level 1

Amplification: LSM updates are written to log, memtable, and SSTable
- LevelDB does not sync log updates for performance
- Log updates are appended with a checksum

3. High Write Logging Cost

30

0

10

20

30

4K 8K 16K

La
te

nc
y

(m
ic

ro
s/

op
) Log Write

4. Lack of Parallelism – Sequential Reads

31

Application

DRAM Memtable

DRAM Immutable

Level 0

Level 1

Level 1

0 1 2 3 ….

0 1 2 3 4 5 6 7

0 1 2 3 … … … … 100 101 …

Get (“107")

Search memtable

Search Immutable memtable

4. Lack of Parallelism – Sequential Reads

32

Application

DRAM Memtable

DRAM Immutable

Level 0

Level 1

Level 1
a 0 – 10

b 11 – 15

… 17

k 100

a 0 – 3
r 4 – 8

… ….

Range Blocks
d 12

a 5-60 1 2 3 ….

0 1 2 3 4 5 6 7

0 1 2 3 … … … … 100 101 …

Get (“107")

Search memtable

Search Immutable memtable

4. Lack of Parallelism – Sequential Reads

33

Application

DRAM Memtable

DRAM Immutable

Level 0

Level 1

Level 1
a 0 – 10

b 11 – 15

… 17

k 100

a 0 – 3
r 4 – 8

… ….

Range Blocks
d 12

a 5-60 1 2 3 ….

0 1 2 3 4 5 6 7

0 1 2 3 … … … … 100 101 …

Get (“107")

Search memtable

Search Immutable memtable

Index lookup

Index lookup

Index lookup

Huge S/W cost

Introduction

Background on LevelDB

Motivation
- High serialization, compaction, and logging cost
- Lack of parallelism

NoveLSM Design
- Persistent memtable, NVM mutability, In-place commits
- Read parallelism

Evaluation

Conclusion

Outline

NonVolatile Memory LSM (NoveLSM)

35

Reduce serialization – NVM memtable designed with persistent skip list

Reduce compaction – Enable direct mutability on NVM

Reduce logging cost – In-place transactional commits to NVM memtable

Improve read parallelism – Read LSM levels in parallel

1. Reduce Serialization: Immutable NVM

36

NVM Immutable Memtable

Application

DRAM Memtable

DRAM Immutable

Level 0

Level 1

High DRAM memtable to storage SSTable serialization cost

Idea: Introduce byte-addressable persistent NVM skip list

Immutable Memtable: Persistent Skip List

37

Skip lists - non-persistent structures with fast probabilistic writes and read

Our goal: make skip lists persistent for exploiting NVM byte-addressability

23 next

Insert (“64”, val)

64
0xdb3f0x643f

0x344f

0x543f

next

12
next

Addr: 0x1000

+∞+∞

Head Tail

+∞

+∞

+∞ +∞

+∞

+∞

next

34 next

.

In-memory Skip List

38

23 next

Insert (“64”, val)

64
next

12
next

next

34 next

.

Addr: 0x1000, Offset: 0

+∞
+∞

Head Tail

+∞

+∞

+∞ +∞

+∞

+∞
1000

512 512

1256

Persistent skip list created by mapping memory from NVM

Uses offset in the mapped memory instead of virtual address

To read/recover, simply get the root offset and traverse using offsets

Memory-mapped region in a file

Designing Persistent Skip List

+∞

+∞

+∞

Head Tail

+∞23

+∞45

Immutable NVM Design

39

Application

DRAM Memtable

NVM Immutable Memtable

DRAM Immutable

DRAM Memtable (FULL)

Level 0

Level 1

Reduce serialization with a immutable persistent skip list

Put(37, val)

Immutable NVM Design

40

Application

DRAM Memtable

NVM Immutable Memtable

DRAM Immutable

DRAM Memtable (FULL)

DRAM Immutable (FULL)

Level 0

Level 1

Reduce serialization with a immutable persistent skip list

Put(37, val)

+∞

+∞

+∞

Head Tail

+∞23

+∞45

Immutable NVM Design

41

Application

DRAM Memtable

NVM Immutable Memtable

DRAM Immutable

DRAM Memtable (FULL)

DRAM Immutable (FULL)

Level 0

Level 1

Reduce serialization with a immutable persistent skip list

Put(37, val)

+∞

+∞

+∞

Head Tail

+∞23

+∞45

Copy data to large NVM memtable
w/o serialization

Reads avoid deserialization

Immutable NVM Design

42

Application

DRAM Memtable

NVM Immutable Memtable

DRAM Immutable

DRAM Memtable (FULL)

DRAM Immutable (FULL)

Level 0

Level 1

Reduce serialization with a immutable persistent skip list

Put(37, val)

+∞

+∞

+∞

Head Tail

+∞23

+∞45

Copy data to large NVM memtable
w/o serialization

Reads avoid deserialization

Compaction frequency dependent on
DRAM memtable size

Increasing DRAM buffer increases
memory use by 2x

Recovery cost increases

Log not committed - data loss!

43

Application

Level 0

Level 1

DRAM Memtable

DRAM Immutable

DRAM Memtable (FULL)

DRAM Immutable (FULL)

High compaction cost even with immutable memtable design

2. Reducing Compaction: NVM Mutability

44

Application

Level 0

Level 1

DRAM Memtable NVM Memtable

DRAM Immutable NVM Immutable

DRAM Memtable (FULL)

DRAM Immutable (FULL)

High compaction cost even with immutable memtable design

2. Reducing Compaction: NVM Mutability

45

Application

Level 0

Level 1

DRAM Memtable NVM Memtable

DRAM Immutable NVM Immutable

DRAM Memtable (FULL)

DRAM Immutable (FULL)

High compaction cost even with immutable memtable design

Idea: Exploit byte addressability and directly update NVM memtable

2. Reducing Compaction: NVM Mutability

46

Application

Level 0

Level 1

DRAM Memtable NVM Memtable

DRAM Immutable NVM Immutable

DRAM Memtable (FULL)

DRAM Immutable (FULL)

Put(100, val)

High compaction cost even with immutable memtable design

Idea: Exploit byte addressability and directly update NVM memtable

2. Reducing Compaction: NVM Mutability

47

Application

Level 0

Level 1

DRAM Memtable NVM Memtable

DRAM Immutable NVM Immutable

DRAM Memtable (FULL)

DRAM Immutable (FULL)

Put(100, val)

NVM Memtable (FULL)

Direct NVM mutability provides sufficient time for DRAM compaction
- Reduces foreground stall

NVM memtable persistent – data not lost after failure

High compaction cost even with immutable memtable design

Idea: Exploit byte addressability and directly update NVM memtable

2. Reducing Compaction: NVM Mutability

Put(37, val)

3. Reducing Logging Cost: In-place Commits

48

Problem: Writing to log before memtable has high overhead

NVM MemtableDRAM Memtable (FULL)

23,value C 45,value C

DRAM Memtable

Application

Head Tail

Storage Log

DRAM ImmutableDRAM Immutable (FULL)

3. Reducing Logging Cost: In-place Commits

49

Problem: Writing to log before memtable has high overhead

NVM MemtableDRAM Memtable (FULL)

23,value C 45,value C 37,value C

DRAM Memtable

Application

Head Tail

Storage Log

DRAM ImmutableDRAM Immutable (FULL)

DRAM Memtable (FULL)

+∞

+∞

+∞

Head Tail

+∞100

+∞

3. Reducing Logging Cost: In-place Commits

50

Problem: Writing to log before memtable has high overhead

Idea: Avoid logging for NVM memtable with in-place commits

NVM MemtableDRAM Memtable (FULL)

Put(100, val)

23,value C 45,value C 37,value C

begin_trans()

skiplist.insert(100, val)

end_trans()

DRAM Memtable

Application

Head Tail

Storage Log

DRAM ImmutableDRAM Immutable (FULL)

+∞

+∞

+∞

Head Tail

+∞100

+∞

3. Reducing Logging Cost: In-place Commits

51

Problem: Writing to log before memtable has high overhead

Idea: Avoid logging for NVM memtable with in-place commits

NVM MemtableDRAM Memtable (FULL)

Put(100, val)

23,value C 45,value C 37,value C

begin_trans()

skiplist.insert(100, val)

end_trans()

DRAM Memtable

Application

Head Tail

Storage Log

DRAM ImmutableDRAM Immutable (FULL)

Crash

NVM memtable recovery – remap map file and find root pointer

52

Level 0

Level 1

DRAM Memtable NVM Memtable

DRAM Immutable

Read (100)

NVM Immutable

DRAM memtable read thread

Level k
…….

SSTable read thread

NVM memtable read thread

Thread management overhead can be expensive
- Bloom filters to launch threading only if DRAM memtable is a miss

Solution: Parallelize search using dedicated threads

Application

4. Increase Parallelism: Read Threading

Introduction

Background on LevelDB

Motivation
- High serialization, compaction, and logging cost
- Lack of parallelism

NoveLSM Design
- Persistent memtable, NVM mutability, In-place commits
- Read parallelism

Evaluation

Conclusion

Outline

Evaluation

- Dbbench – Widely used LSM benchmark
- YCSB cloud benchmark (see paper)

Benchmarks and application traces

Evaluation Goals
- Immutable memtable reduce (de)serialization cost?
- Mutable membtable reduce compaction cost?
- When read parallelism is effective?
- Reducing logging improves restart performance?

54

Evaluation Methodology
- 16 GB database size and vary values sizes
- SSTables always placed in NVM for all approaches

LevelDB-NVM – Vanilla LevelDB using NVM for SSTables

NoveLSM [immut-small] – 2GB NVM memtable

NoveLSM [immut-large] – 4GB NVM memtable

Immutable Memtable: Serialization Impact

55

NVM Immutable Memtable

Application

DRAM Memtable

DRAM Immutable

Level 0

Level 1

Immutable memtable provides marginal gains for writes
- Compaction cost limits benefits

Reduces read deserialization reducing latency by 2x
56

0

100

200

4 KB 16 KB

La
te

nc
y

 (
m

ic
ro

s/
op

)

Write

LevelDB-NVM NoveLSM [immut-small] NoveLSM [immut-large]

0

5

10

15

20

25

4 KB 16 KB
Read

Serialization Impact: Immutable Memtable

2x

RocksDB – Facebook’s implementation, optimized for SSD

- Provides parallel compaction
- SSTable uses plain table (cuckoo hashmap) for random access

NoveLSM [mutable] – Direct mutable 4 GB NVM memtable

NoveLSM [mutable +para] – Mutable NVM + read parallelism

NoveLSM [mutable+para +NoSST] – All mutable memtable without SST

Reducing Compaction: Mutable Memtable

57

0

100

200

300

400

500

1 KB 4 KB 16 KB 64 KB

La
te

nc
y

 (
m

ic
ro

s/
op

)

LevelDB-NVM

RocksDB-NVM

NoveLSM [mutable]

NoveLSM [mutable +para +NoSST]

Mutable NVM memtable provides up to 3.8x gains over LevelDB

RocksDB parallel compaction and plain table storage effective

NoveLSM [mutable+para +NoSST] – upto 50% gain even over RocksDB

3.8x

58

Reducing Compaction: Mutable Memtable

0

5

10

15

20

25

4 KB 16 KB

La
te

nc
y

(m
ic

ro
s/

op
)

Value size

LevelDB-NVM RocksDB-NVM
NoveLSM [mutable] NoveLSM [mutable + para]

Read Parallelism Impact

59

Mutable NVM memtable improves read performance even over RocksDB

Read parallelism (mutable+para) provides gains for larger value sizes
- NoveLSM provides 73% gains even over RocksDB

2.2x

For LevelDB and RocksDB, we increase DRAM memtable size

For NoveLSM, we increase persistent NVM memtable size

60

0

1

2

3

4

5

64 512 1024 2048

R
es

ta
rt

 t
im

e
(s

ec
on

ds
)

Memtable size (MB)

LevelDB-NVM

RocksDB-NVM

NoveLSM [mutable +para]

NoveLSM reduces log recovery cost by more than 99%

Recovery c
ost in

creases with log siz
e

Restart Performance

Introduction

Background on LevelDB

Motivation
- High serialization, compaction, and logging cost
- Lack of parallelism

NoveLSM Design
- Persistent memtable, NVM mutability, In-place commits
- Read parallelism

Evaluation

Conclusion

Outline

Summary
Motivation
- Simply adding NVMs to existing LSMs for storage not sufficient
- Eliminating S/W overhead (e.g., serialization, compaction) is critical

Solution

- NoveLSM - byte-addressable and persistent data structures
- Reduce serialization, compaction, and logging cost
- Improve read parallelism

Evaluation

- NoveLSM reduces write latency by up to 3.8x and read latency by 2x
- Makes restarts significantly fast

62

Conclusion
We are moving towards a storage era with microsecond latency

Eliminating software overhead is critical
- We take first step towards redesigning existing LSMs for NVM

Future work
- Rethink LSMs from scratch for NVM hardware-level performance

63

0

40

80

120

160

Random Write Random Read

Sp
ee

du
p

ov
er

 S
SD

NVM hardware LevelDB NoveLSM NoveLSM - NoSST

More
opportunities!

Questions?

Thanks!

64

