
On Smart Query Routing: For Distributed
Graph Querying with Decoupled Storage

Arijit Khan

Nanyang
Technological

University (NTU),
Singapore

Gustavo Segovia

ETH Zurich,
Switzerland

Donald Kossmann

Microsoft Research,
Redmond, USA

Big Graphs

1/ 32
On Smart Query Routing: For Distributed Graph Querying with Decoupled Storage:
Arijit Khan (NTU Singapore), G. Segovia, and D. Kossmann

Google: > 1 trillion
indexed pages

Web Graph Social Network

Facebook: > 800
million active users

31 billion RDF
triples in 2011

Information Network Biological Network

De Bruijn:
4k nodes

(k = 20, … , 40)

Graphs in Machine Learning

100M Ratings,
480K Users,
17K Movies

31 billion RDF
triples in 2011

Background: Distributed Graph
Querying Systems

2/ 32
On Smart Query Routing: For Distributed Graph Querying with Decoupled Storage:
Arijit Khan (NTU Singapore), G. Segovia, and D. Kossmann

State-of-the-art distributed graph querying systems (e.g.,
SEDGE [SIGMOD’12], Trinity [SIGMOD’13], Horton [PVLDB’13])

First, partition the graph, and then
place each partition on a separate
server, where query answering over
that partition takes place.

Background: Distributed Graph
Querying Systems

3/ 32
On Smart Query Routing: For Distributed Graph Querying with Decoupled Storage:
Arijit Khan (NTU Singapore), G. Segovia, and D. Kossmann

State-of-the-art distributed
graph querying systems

Disadvantages

Ø Fixed Routing (less flexible)

Ø Balanced Graph Partitioning
and Re-Partitioning

Background: Distributed Graph
Querying Systems

4/ 32
On Smart Query Routing: For Distributed Graph Querying with Decoupled Storage:
Arijit Khan (NTU Singapore), G. Segovia, and D. Kossmann

State-of-the-art distributed
graph querying systems

Disadvantages

Ø Fixed Routing (less flexible)

• The server which contains the query
node can only handle that request à
the router maintains a fixed routing
table (or, a fixed routing strategy,
e.g., modulo hashing).

• Less flexible with respect to query
routing and fault tolerance, e.g.,
adding more machines will require
updating the data partition and/or
the routing table.

Ø Balanced Graph Partitioning
and Re-Partitioning

Background: Distributed Graph
Querying Systems

5/ 32
On Smart Query Routing: For Distributed Graph Querying with Decoupled Storage:
Arijit Khan (NTU Singapore), G. Segovia, and D. Kossmann

State-of-the-art distributed
graph querying systems

Disadvantages

Ø Fixed Routing (less flexible)

Ø Balanced Graph Partitioning and Re-
Partitioning

• (1) workload balancing to maximize
parallelism, (2) locality of data access to
minimize network communication à
NP-hard, difficult in power-law graphs.

• later updates to graph structure or
variations in query workloads à graph
re-partitioning/ replication à online
monitoring of workload changes, re-
partitioning of the graph topology, and
migration of graph data across servers
are expensive.

Roadmap

6/ 32
On Smart Query Routing: For Distributed Graph Querying with Decoupled Storage:
Arijit Khan (NTU Singapore), G. Segovia, and D. Kossmann

Distributed graph querying and graph partitioning

Decoupled graph querying system

Related work

Smart graph query routing

Experimental results

Conclusions

Decoupled Graph Querying System

7/ 32
On Smart Query Routing: For Distributed Graph Querying with Decoupled Storage:
Arijit Khan (NTU Singapore), G. Segovia, and D. Kossmann

we decouple query processing
and graph storage into two
separate tiers.

This decoupling happens at a
logical level.

Decoupled architecture for graph querying

Decoupled Graph Querying System

8/ 32
On Smart Query Routing: For Distributed Graph Querying with Decoupled Storage:
Arijit Khan (NTU Singapore), G. Segovia, and D. Kossmann

Ø Flexible routing

Ø Less reliant on good partitioning
across storage servers
[Due to our smart query routing
strategy – will be discussed soon!]

Decoupled architecture for graph querying

Benefits

Decoupled Graph Querying System

9/ 32
On Smart Query Routing: For Distributed Graph Querying with Decoupled Storage:
Arijit Khan (NTU Singapore), G. Segovia, and D. Kossmann

Ø Flexible routing

• A query processor no longer
assigned a fixed part of the graph à
equally capable of handling any
request à facilitating load
balancing and fault tolerance.

• The query router can send a request
to any of the query processors à
more flexible query routing, e.g.,
more query processors can be
added (or, a query processor that is
down can be replaced) without
affecting the routing strategy.

Decoupled architecture for
graph querying

Benefits

Decoupled Graph Querying System

10/ 32
On Smart Query Routing: For Distributed Graph Querying with Decoupled Storage:
Arijit Khan (NTU Singapore), G. Segovia, and D. Kossmann

Ø Flexible routing

• Each tier can be scaled-up
independently.

• A certain workload is processing
intensive à allocate more servers
to the processing tier.

• Graph size increases over time à
add more servers in the storage
tier.

• Decoupled architecture, being
generic, can be employed in many
existing graph querying systems. Decoupled architecture for

graph querying

Benefits

Roadmap

11/ 32
On Smart Query Routing: For Distributed Graph Querying with Decoupled Storage:
Arijit Khan (NTU Singapore), G. Segovia, and D. Kossmann

Distributed graph querying and graph partitioning

Decoupled graph querying system

Related work

Smart graph query routing

Experimental results

Conclusions

Related Work: Decoupling Storage and
Query Processors

12/ 32
On Smart Query Routing: For Distributed Graph Querying with Decoupled Storage:
Arijit Khan (NTU Singapore), G. Segovia, and D. Kossmann

Google’s F1 [PVLDB’13]

ScaleDB [http://scaledb.com/pdfs/TechnicalOverview.pdf]

Loesing et. al. (On the Design and Scalability of Distributed Shared-
Data Databases) [SIGMOD’15]

Binnig et. al. (The End of Slow Networks: It’s Time for a Redesign)
[PVLDB’16]

Shalita et. al. (Social Hash: An Assignment Framework for Optimizing
Distributed Systems Operations on Social Networks) [NSDI’16]

Facebook’sMemcached [NSDI’13]

13/ 32
On Smart Query Routing: For Distributed Graph Querying with Decoupled Storage:
Arijit Khan (NTU Singapore), G. Segovia, and D. Kossmann

Decoupled Graph Querying System

Disadvantages

Ø Query processors may need to
communicate with the storage
tier via the network à additional
penalty to the response time for
answering a query.

Ø May cause high contention rates
on either the network, storage
tier, or both.

Decoupled architecture for
graph querying

14/ 32
On Smart Query Routing: For Distributed Graph Querying with Decoupled Storage:
Arijit Khan (NTU Singapore), G. Segovia, and D. Kossmann

Our Contribution: Smart Query Routing

Decoupled architecture for
graph querying

We design a smart query routing logic to
utilize the cache of query processors over
such decoupled architecture.

More cache hits à reduce communication
among query processors and storage
servers.

More cache hits à less reliant on good
partitioning across storage servers.

Roadmap

15/ 32
On Smart Query Routing: For Distributed Graph Querying with Decoupled Storage:
Arijit Khan (NTU Singapore), G. Segovia, and D. Kossmann

Distributed graph querying and graph partitioning

Decoupled graph querying system

Related work

Smart graph query routing

Experimental results

Conclusions

h-Hop Traversal Queries

16/ 32
On Smart Query Routing: For Distributed Graph Querying with Decoupled Storage:
Arijit Khan (NTU Singapore), G. Segovia, and D. Kossmann

Online, h-hop queries: explore a small region of the entire graph, and
require fast response time.

Start with a query node, and traverse its neighboring nodes up to a
certain number of hops (i.e., h = 2, 3).

h-hop neighbor aggregation

h-step random walk with restart

h-hop reachability

Examples

More complex queries, e.g., node labeling and classification, expert
finding, ranking, discovering functional modules, complexes, and
pathways

Objectives for Smart Query Routing

17/ 32
On Smart Query Routing: For Distributed Graph Querying with Decoupled Storage:
Arijit Khan (NTU Singapore), G. Segovia, and D. Kossmann

Leverage each processor’s
cached data

Balance workload even if skewed
or contains hotspot

Make fast routing decisions
[a small constant time, or << O(n)]

Have low storage overhead in
the router
[a small fraction of the input graph size]

Decoupled architecture for
graph querying

Challenges in Smart Query Routing

18/ 32
On Smart Query Routing: For Distributed Graph Querying with Decoupled Storage:
Arijit Khan (NTU Singapore), G. Segovia, and D. Kossmann

Leverage each processor’s cached
data
Balance workload even if skewed or
contains hotspot
Make fast routing decisions
Have low storage overhead in the
router

Objectives are conflicting

Ø For maximum cache locality, router
can send all queries to the same
processor (assuming no cache
eviction) à imbalanced workload in
processorsà lower throughput.

Ø router could inspect the cache of
each processor before making a good
routing decision à network delay.
Hence, router must infer what is
likely to be in each processor’s cache.

Smart Routing Objectives

Challenges in Smart Query Routing

19/ 32
On Smart Query Routing: For Distributed Graph Querying with Decoupled Storage:
Arijit Khan (NTU Singapore), G. Segovia, and D. Kossmann

Topology-Aware Locality

Ø successive queries on nearby
nodes must be sent to the same
processor. It is likely that h-hop
neighborhoods of these nodes
significantly overlap.

Ø How the router knows about
nearby nodes without storing the
entire graph topology?

- use landmark, graph embedding

2-hop neighborhoods of u
and v overlap significantly

Smart Routing Objectives are conflicting!

Challenges in Smart Query Routing

20/ 32
On Smart Query Routing: For Distributed Graph Querying with Decoupled Storage:
Arijit Khan (NTU Singapore), G. Segovia, and D. Kossmann

Query Stealing

Ø Always Routing queries to processors that have the most useful cache data
à workload imbalance if skew/ query hotspotà lower throughput.

Ø We perform query stealing at router à Whenever a processor is idle and is
ready to handle a new query, if it does not have any other requests assigned
to it, the router may “steal” a request and send to it which was intended for
another processor.

Ø Query stilling by maintaining topology-aware locality (as much as possible).

Smart Routing Objectives are conflicting!

Smart Routing-1: Landmark

21/ 32
On Smart Query Routing: For Distributed Graph Querying with Decoupled Storage:
Arijit Khan (NTU Singapore), G. Segovia, and D. Kossmann

If two nodes are close to a
given landmark, they are
likely to be close themselves.

Smart Routing-1: Landmark

22/ 32
On Smart Query Routing: For Distributed Graph Querying with Decoupled Storage:
Arijit Khan (NTU Singapore), G. Segovia, and D. Kossmann

Select a small set of L nodes as landmarks.

Compute distance of every node to
landmarks.

Assign landmarks to query processors: Every
processor is assigned a “pivot” landmark with
the intent that pivot landmarks are as far
from each other as possible. Each remaining
landmark is assigned to the processor which
contains its closest pivot landmark.

Pre-processing

The distance of a node u to a processor p is defined as the minimum
distance of u to any landmark that is assigned to processor p.

This distance information is stored in the router, which requires O(nP) space
and O(nL) time to compute.

If two nodes are close to a
given landmark, they are
likely to be close themselves.

Smart Routing-1: Landmark

23/ 32
On Smart Query Routing: For Distributed Graph Querying with Decoupled Storage:
Arijit Khan (NTU Singapore), G. Segovia, and D. Kossmann

a query on node u à the router
verifies the pre-computed distance
d(u, p) for every processor p à selects
the one with the smallest d(u, p) value.

Routing decision time: O(p)

Online Routing

If two nodes are close to a
given landmark, they are
likely to be close themselves.

Load-balancing via Query-stealing

Route to smallest load-balanced distance.

Nearby nodes are routed in similar way, maintaining topology-aware locality.

Smart Routing-2: Embed

24/ 32
On Smart Query Routing: For Distributed Graph Querying with Decoupled Storage:
Arijit Khan (NTU Singapore), G. Segovia, and D. Kossmann

Embed a graph in a lower D-dimensional
Euclidean plane.

The hop-count distance between graph nodes
are approximately preserved via their
Euclidean distance.

Storage = O(nD), time = O(|L|2D + n|L|D)

Pre-processing

Graph embedding in 2D
Euclidean plane

A benefit of embed routing is that the pre-processing is independent of the system topology,
allowing more processors to be easily added at a later time.

Smart Routing-2: Embed

25/ 32
On Smart Query Routing: For Distributed Graph Querying with Decoupled Storage:
Arijit Khan (NTU Singapore), G. Segovia, and D. Kossmann

Exponential moving average to compute the
mean of the processor’s cache contents.

Router finds the distance between a query
node u and a processor p, denoted as d(u, p),
and defined as the distance of the query
node’s co-ordinates to the historical mean of
the processor’s cache contents.

Route query on u to processor p with
minimum d(u, p).

Routing decision time: O(PD)

Online Routing

Graph embedding in 2D
Euclidean plane

Smart Routing-2: Embed

25/ 32
On Smart Query Routing: For Distributed Graph Querying with Decoupled Storage:
Arijit Khan (NTU Singapore), G. Segovia, and D. Kossmann

Exponential moving average to compute the
mean of the processor’s cache contents.

Router finds the distance between a query
node u and a processor p, denoted as d(u, p),
and defined as the distance of the query
node’s co-ordinates to the historical mean of
the processor’s cache contents.

Route query on u to processor p with
minimum d(u, p).

Routing decision time: O(PD)

Online Routing

Graph embedding in 2D
Euclidean plane

Load-balancing via
Query-stealing

Roadmap

26/ 32
On Smart Query Routing: For Distributed Graph Querying with Decoupled Storage:
Arijit Khan (NTU Singapore), G. Segovia, and D. Kossmann

Distributed graph querying and graph partitioning

Decoupled graph querying system

Related work

Smart graph query routing

Experimental results

Conclusions

Experimental Setup

27/ 32
On Smart Query Routing: For Distributed Graph Querying with Decoupled Storage:
Arijit Khan (NTU Singapore), G. Segovia, and D. Kossmann

Graph Datasets

Cluster Configuration

Ø 12 servers each having 2.4 GHz Intel Xeon processors, 0 – 4GB cache.

Ø interconnected by 40 Gbps Infiniband, and also by 10 Gbps Ethernet.

Ø Use a single core of each server with the following configuration: 1 server as router, 7 servers in the
processing tier, 4 servers in the storage tier; and communication over Infiniband with remote direct
memory access (RDMA).

Ø RAMCloud as storage tier.

Ø Graph is stored as adjacency list – every node-id is key, and the corresponding value is an array of its
1-hop neighbors.

Ø The graph is partitioned across storage servers via RAMCloud’s default and inexpensive hash
partitioning scheme, MurmurHash3 over graph nodes.

List of Experiments

28/ 32
On Smart Query Routing: For Distributed Graph Querying with Decoupled Storage:
Arijit Khan (NTU Singapore), G. Segovia, and D. Kossmann

Comparison with distributed graph systems (SEDGE [SIGMOD’12] with Giraph
[SIGMOD’10], GraphLab [VLDB’12]) that use smart graph partitioning and re-
portioning - Our method achieves up to an order of magnitude higher throughput
even with inexpensive hash partitioning of the graph!

Scalability with number of processors and storage servers

Impact of cache size

Impact of graph updates

Sensitivity w.r.t. different parameters: query locality and hotspot, h-hop queries, load
factor, smoothing parameter, embedding dimensionality, landmark numbers,
minimum distance between a pair of landmarks

Performance Metrics

Baseline Routing Methods

Query efficiency, Query throughput, Cache hit rates

Next ready, No cache, Modular hash with query stealing

29/ 32
On Smart Query Routing: For Distributed Graph Querying with Decoupled Storage:
Arijit Khan (NTU Singapore), G. Segovia, and D. Kossmann

Performance with Varying Number of
Query Processors

Embed routing is able to sustain almost same cache hit rate with many query
processors. Hence, its throughput scales linearly with query processors.

On Smart Query Routing: For Distributed Graph Querying with Decoupled Storage:
Arijit Khan (NTU Singapore), G. Segovia, and D. Kossmann

Impact of Cache Sizes

Both smart routings – Embed and
Landmark – utilize the cache well; and
for the same amount of cache, they
achieve lower response time compared
to baseline routings.

30/ 32

Roadmap

31/ 32
On Smart Query Routing: For Distributed Graph Querying with Decoupled Storage:
Arijit Khan (NTU Singapore), G. Segovia, and D. Kossmann

Distributed graph querying and graph partitioning

Decoupled graph querying system

Related work

Smart graph query routing

Experimental results

Conclusions

Conclusions

On Smart Query Routing: For Distributed Graph Querying with Decoupled Storage:
Arijit Khan (NTU Singapore), G. Segovia, and D. Kossmann 32/ 32

Decoupled graph querying system

Smart query routing to achieve
higher cache hits for h-hop traversal
queries

Decoupled architecture for
graph querying

Ø emphasize less on expensive graph
partitioning and re-partitioning across
storage tiers

Ø provide linear scalability in throughput
with more number of query processors

Ø works well in the presence of query
hotspots

Ø adaptive to workload changes and graph
updates.

