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Why approximate computing in video streaming apps?

e Video streaming applications require low-latency processing
. Devices are resource constrained

e Human perception can tolerate slight errors in videos

Typically 30FPS = 33 ms for each frame
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Background: Approximation techniques and parameters

e Loop perforation:
for (i=0; i<n; i = i + approx_level) —"
result = compute_result();

* Loop memorization:
for (i=0;i<n;i=i++)
if(i % approx_level == 0)
cached result = result = compute_result();
else
result = cached_result;

Approximation parameters = approx_level
1 =Exact execution
e Higher value => More approximate

1
approx_level

Execution saving = 1 —
6->uptp 83%

Quality degradation is unknown
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Quality metric for videos

* PSNR (Peak Signal to Noise Ratio)

e Higher PSNR means higher quality/lower error
 The approximate output with regard to the exact output

e 30dB means RMSE is 6% of the mean pixel value and 20dB means 20%.
e With easy-to-understand meaning and easy-to-choose threshold

1 K-l MaxVal
PSNR = — ¥ 20 % 10g 10— e
K = VMSE(Z;.,Yy,)

* SSIM, FSIM

e Guarantee the quality ordering but lacking obvious meaning and threshold.
e Slow to compute
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A video processing workflow

Streaming Video
Processing Workflow

- Video
E Decoder

Streaming Video

approximable filters)

Pipeline of filters (shaded blocks are

Video
Encoder

Processed
Streaming Video

Research questions

1)
2)
3)

Does one approximation level apply to all frames?
How to determine optimal approximation level in a data-aware manner?
How to control online overhead of determining optimal approximation level?
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Prior Work

Video proc. w/ approx.

[1]

Canary input to search

¢ (+) Parameters for each input
e (-) Biased error metric
* (-) Not for streaming application

Video proc. w/ approximation

e (-) Too conservative para. for all
input.

Video processing

e (-) Slow

[1] Laurenzano, M. A., Hill, P., Samadi, M., Mahlke, S., Mars, J., & Tang, L. (2016). Input responsiveness: using canary inputs to

dynamically steer approximation. ACM SIGPLAN Notices, 51(6), 161-176.
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Why use a canary input

* Provides an estimate of the output quality
* Enables data-aware approximation

Full-sized input Exact output Canary input Exact output
Cheap!

Approximate output

Expensive

Approximate output

Expensive
Unknown quality
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Problem 1 — Canary output quality Is biased
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T a0 | higher than canary one for
" over 98% approximation
2 i setting.
S e 45.1% approximation setting is
z ignored due to the mistaken
) _ — = = = JJhe real guality requirement .
a 307 quality threshold.
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PSNR of canary output
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Problem 2 — Online overhead really matters

Sources of online overhead

1) Generating canary input

2) Searching approximation parameters
3) Calculating quality metric (PSNR)

4) Correcting quality bias

e Bottom line: online overhead should never outweigh the savings of
approximation
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Progress of approximation in video processing

Video proc. w/ approx. * (+) Never violate quality threshold

OraC|e Optimal parameters * (+) Low processing time
* (+) Low overhead

Video proc. w/ approx. * (+) Unbiased error metric
¢ (+) Close to optimal parameters
¢ (+) Overhead controlled

Canary + Error mapping + Sampling

Video proc. w/ approx. e (+) Parameters for each input

Canary input to search e (-) Biased error metric

* (-) Too conservative para. for all

Video proc. w/ approximation \
input.

Video processing ¢ (-) Slow

[1] Laurenzano, M. A, Hill, P., Samadi, M., Mahlke, S., Mars, J., & Tang, L. (2016). Input responsiveness: using canary inputs to
dynamically steer approximation. ACM SIGPLAN Notices, 51(6), 161-176.

[2] Xu, R., Koo, J., Kumar, R., Bai, P., Mitra, S., Misailovic, S., & Bagchi, S. (2018, July). VideoChef: Efficient Approximation for Streaming
Video Processing Pipelines. In 2018 USENIX Annual Technical Conference (USENIX ATC 18). USENIX Association}.
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End-to-end system workflow

Streaming Video
Processing Workflow

Video
ﬁ Decoder

Streaming Video

Pipeline of filters (shaded blocks are
approximable filters)
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Key Designs

VipeoCHer Pifline Training \
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/

e Error mapping model —to map the
quality metric of canary output to

that of full-sized output
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Key Designs
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/

e Searching policy — to approach the
optimal approximation setting that
achieves the lowest execution time

while guaranteeing quality
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Key Designs

VIDEOCHEF Online Phase
For Key Frames
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Error mapping model

e Given a full-sized frame XF, the canary frame X, the canary output quality C
and a set of approximation parameter A.

e We want to predict the full-sized output quality F

e No prediction: F = C (IRA)

e Cmodel —aware of canary quality 08
F=wy+w; XC+w,XC(C? e

e  CA model - C model plus approximation parameters &
F=w-(1,CA) |

e CAD model — CA model plus feature vectors (row diff.) °2 J’

0.4- ’:‘

--|RA
-2-VideoChef(C)

IR as f -+-VideoChef(CA)
F=w-: (1’ C A, D) Jfoes -4 VideoChef(CAD)
0 2 4 6 8 10
Prediction Error - absolute value
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Searching policy

e Start from (1,1,1), then increase by 1 in each dimension and follow

the least-error path until the predlcted quallty of full output reaches
the threshold. *° e

| This zone should be |

-

8_45 considered while not. 1

4+ 45.1% approximation ™ -

2 parameter missed - |

O ‘-'.;

D 40 '

5 . " =gy Both IRA and VideoChef
Y= .

S == Advantage of VideoChef
o

% 30 - i = = = = Jhereal guality requirement

(a

This zone violates the quality
threshold, but may be overlooked

; 1
20 25 30 35 40 45 50
PSNR of canary output
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Sampling policy to reinitiate search for optimal settings

|-frames in MPEG-4 videos

Scene change detector (lightweight frame-difference based

classifier)

Straaming Video Pipeline of filters (shaded blocks are
Processing Workflow approximable filters)
4 Y
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e e Processing
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Mﬂmm?d()ptimal
Approximation Settings

/
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Evaluation

106 Youtube videos w/ 10 video filters and 9 3-stage filter pipelines
Loop perforation and memoization, each w/ 6 approximation levels

Comparing 6 configurations (2 variants of VideoChef) and 2 PSNR
thresholds (30dB and 20dB)

1)
2)
3)
4)
5)
6)

Exact execution

Static approximation

IRA

VideoChef — I-frame sampling
VideoChef — Scene change detector
Oracle
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task clock time

Evaluation — 30dB tight quality constraint

1+
05“
0

I Execution on full-sized input| |Searching overhead|

DEB DVE BVI

Pipelines

From left to right: Exact, Static Approx., IRA, VideoChef-A, VideoChef

ulv DUE BVD UEE

[-B and Oracle

EUB BUC All

Execution time is reduced by
39.1% over exact execution
29.9% over static approximation
14.6% over IRA and

within 20% of Oracle

From left tl} right: Static Aiprox‘, IRA, VifleoChef-A, VideoCLefIB and Oracle
! | |
%40 | | | | | | | 'l |
z bl N IR
= | I f I | h ' I | 1 .
P30 ! a A Tracks the Oracle quality and
the user specified quality
““ DEB DVE BVI UV DUE BVD UEE EUB BUC threshold, violation < 5%
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Evaluation — 30dB tight quality

The CDF of prediction error

helps to choose a good in-
application threshold ontop
of user’s hard threshold. S

constraint

0.8

0.6

0.4¢

From left tl} right: Static Aiprox‘, IRA, VifleoChef-A, VideoCLefIB and Oracle
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Prediction Error - absolute value

Tracks the Oracle quality and
the user specified quality
threshold, violation < 5%

PURDUE




User Perception Study

We asked 16 users to watch 16 side-by-side video pairs and tell difference between them.

VideoChef video Oracle video

No difference 58.59%
Little difference 34.77%
Large difference 6.64%
Total difference 0

E\@L_ 21
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Conclusion

 VideoChef: A system for performance and accuracy optimization of
video streaming pipelines in a data-dependent manner

 Predictive model to accurately estimate the quality degradation in
the full-sized output from the canary output

 Efficient and incremental search technique for the optimal
approximation setting to reduce the overhead of the search process

e (Quantitative evaluation and user study
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Insights

 Determination of optimal approximation setting in a streaming
application is challenging because the setting may change during the
stream. It is important to ensure that the cost of searching for the
optimal parameter does not outweigh the benefit of the approximate
execution.

e Quality difference between canary output and full-sized output is not
negligible.

* Bringing in domain knowledge (I-frames for MPEG video) can be a
great help to reduce the overhead of the approximation technique.
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Questions?

 Thank you!
--- All authors

Ranu Jinku Koo
PURDUE

UNIVERSITY

Rakesh Kumar Peter Bai Subrata Mitra

PURDUE

UNIVERSITY

Sasa Misailovic

Saurabh Bagchi

[LLINOIS PURDUE

UNIVERSITY

24

PURDUE

IVERSITY




	VideoChef: Efficient Approximation for Streaming Video Processing Pipelines
	Why approximate computing in video streaming apps?
	Background: Approximation techniques and parameters
	Quality metric for videos 
	A video processing workflow
	Prior Work
	Why use a canary input
	Problem 1 – Canary output quality is biased
	Problem 2 – Online overhead really matters
	Progress of approximation in video processing
	End-to-end system workflow
	Key Designs
	Key Designs
	Key Designs
	Error mapping model
	Searching policy
	Sampling policy to reinitiate search for optimal settings
	Evaluation
	Evaluation – 30dB tight quality constraint
	Evaluation – 30dB tight quality constraint
	User Perception Study
	Conclusion
	Insights
	Questions?

