From Laptop to Lambda: Outsourcing Everyday Jobs to Thousands of Transient Functional Containers

Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee, Christos Kozyrakis, Matei Zaharia, Keith Winstein

Stanford University

Compiling Google Chrome takes 16 hours.

Running unit tests for LibVPX takes 1.5 hours.

Encoding a 15-minute 4K video takes 7.5 hours.

Rendering a single frame of Monsters University takes 29 hours.

Many others share this dream

- Outsourcing computation:
 distcc ('04), icecc ('11), UCop (ATC'10)
- · Cluster-computing frameworks: Hadoop ('06), Dryad (EuroSys'07), CIEL (NSDI'11), Spark (NSDI'12)
- Burst-parallel cloud functions:
 ExCamera (NSDI'17), PyWren (Socc'17), Sprocket (Socc'18),
 Serverless MapReduce

But this dream is not a reality yet...

Limited speed-ups*, high costs, limited applicability, etc.

^{* &}quot;Scalability! But at what COST?," F. McSherry, M. Isard, and D. G. Murray, HotOS XV

Enter gg

- gg is a framework and a toolkit that makes it practical to outsource everyday applications using thousands of parallel threads on cloud-functions services.
- We ported several latency-sensitive applications to run on gg:
 - software compilation
 - unit testing
 - video encoding
 - object recognition

Challenges of outsourcing applications to the cloud

- 1 Software dependencies must be managed
- 2 Roundtrips to the cloud hurt performance
- 3 Cloud functions are promising, but hard to use well

Challenge 1

Software dependencies must be managed

- With data flow frameworks like Spark, Hadoop and Dryad the software dependencies remain unmanaged.
- Need a warm cluster with everything (e.g., FFmpeg, ImageMagick, NumPy, TensorFlow, SQLite, etc.) preloaded.
- Not amenable to occasional one-off tasks.

A 10,000-core cluster on EC2 costs ~\$400/hour

1 Software dependencies must be managed

Thunk abstraction

- · A thunk is a lightweight container.
 - It identifies an executable, along with its arguments, environment and input data.
- Data is named by the hash of its content.

```
{ function: {
   hash: 'VDSo_TM',
   args: [ 'gcc', '-E', 'hello.c', '-o', 'hello.i'],
    envars: [ 'LANG=us_US' ] },
 objects: [
    'VDSo_TM=gcc',
    'VLb1SuN=hello.c',
    'VOHGODN=/usr/include/stdlib.h',
    'VB33fCB=/usr/include/stdio.h'],
  outputs: [ 'hello.i' ]
```

```
{ function: {
    hash: 'VDSo_TM',
    args: [ 'gcc', '-E', 'hello.c', '-o', 'hello.i'],
    envars: [ 'LANG=us_US' ] },
 objects: [
    'VDSo_TM=gcc',
    'VLb1SuN=hello.c',
    'VOHGODN=/usr/include/stdlib.h',
    'VB33fCB=/usr/include/stdio.h'],
  outputs: [ 'hello.i' ]
```

```
{ function: {
    hash: 'VDSo_TM',
    args: [ 'gcc', '-E', 'hello.c', '-o', 'hello.i'],
    envars: [ 'LANG=us_US' ] },
  objects: [
    'VDSo_TM=gcc',
    'VLb1SuN=hello.c',
    'VOHGODN=/usr/include/stdlib.h',
    'VB33fCB=/usr/include/stdio.h'],
  outputs: [ 'hello.i' ]
```

Challenges of outsourcing applications to the cloud

- 1) Software dependencies must be managed
 - → lightweight containers (thunks)
- 2 Roundtrips to the cloud hurt performance
- 3 Cloud functions are promising, but hard to use well

Challenge 2

Roundtrips to the cloud hurt performance

- Current application-specific outsourcing tools perform best over fast networks:
 - distcc
 - · icecc (Icecream)
 - Utility Coprocessor (UCop) (ATC'10)
- · The laptop is in the driver's seat.

```
{ function: {
    hash: 'VDSo_TM',
    args: [ 'gcc', '-E', 'hello.c', '-o', 'hello.i'],
    envars: [ 'LANG=us_US' ] },
  objects: [
    'VDSo_TM=gcc',
    'VLb1SuN=hello.c',
    'VOHGODN=/usr/include/stdlib.h',
    'VB33fCB=/usr/include/stdio.h'],
  outputs: [ 'hello.i' ]
                                  content hash: TOMEi
```

2 Roundtrips to the cloud hurt performance

Containers can reference each other's outputs

1 PREPROCESS(hello.c) \rightarrow hello.i

```
{ function: {
   hash: 'VDSo_TM',
    args: [
      'gcc', -E', 'hello.c',
      '-o', 'hello.i' ],
    envars: [ 'LANG=us_US' ] },
 objects: [
    'VLb1SuN=hello.c',
    'VDSo_TM=gcc',
    'VAs.BnH=cpp',
    'VB33fCB=/usr/stdio.h'],
  outputs: [ 'hello.i' ] }
```

content hash: TOMEIRL

(2) COMPILE(hello.i) \rightarrow hello.s

```
{ function: {
    hash: 'VDSo_TM',
    args: [
      'gcc', '-x', 'cpp-output',
     '-S', 'hello.i',
      '-o', 'hello.s' ],
    envars: [ 'LANG=us_US' ] },
  objects: [
    ' TOMEIRL =hello.i',
    'VDSo_TM=gcc',
    'VMRZGH1=cc1', ],
  outputs: [ 'hello.s' ] }
           content hash: TRFSH91
```

Representation of gg IR for compiling GNU Hello

2 Roundtrips to the cloud hurt performance

gg IR can handle dynamic dependency graphs

Challenges of outsourcing applications to the cloud

- 1) Software dependencies must be managed
 - → lightweight containers (thunks)
- 2 Roundtrips to the cloud hurt performance
 - → linked containers (gg IR)
- 3 Cloud functions are promising, but hard to use well

Challenge 3

Cloud functions are promising, but hard to use well

- The dream: renting a supercomputer by the second.
- · Warm clusters are expensive, cold clusters are slow to start

10,000 workers for 10 seconds on AWS Lambda costs ~\$5

- ExCamera, PyWren, Sprocket, Serverless MapReduce, Spark-on-Lambda
- Using cloud functions is challenging!

Faster startup

• 1,000 workers running sleep(2) on AWS Lambda:

PyWren	46s
Spark-on-Lambda	54s
Google Kubernetes Engine	03m 08s
gg on AWS Lambda	06s

Getting data to the cloud

Uploading 1,000 files each sized 50 KB to S3:

awscli	11s	
99	0.4s	28x faster

Many applications require inter-function communication

 Was commonly believed that direct communication is forbidden by design.

e.g., "Two Lambda functions can only communicate through an autoscaling intermediary service; [...] a storage system like S3." ~Serverless Computing: One Step Forward, Two Steps Back

• Current systems use indirect techniques such as using shared storage, e.g., S3.

Many applications require inter-function communication

 Using off-the-shelf NAT-traversal techniques, the Lambdas can talk to each other at speeds up to 600 Mbps.

Challenges of outsourcing applications to the cloud

- 1) Software dependencies must be managed
 - → lightweight containers (thunks)
- 2 Roundtrips to the cloud hurt performance
 - → linked containers (gg IR)
- 3 Cloud functions are promising, but hard to use well
 - → grind, grind, grind!

Applications: Software Compilation

- Build systems are often large and complicated; very difficult to manually rewrite them in gg IR.
- We need a system that works with existing build systems, like make, CMake, Ninja, etc.

Model substitution: A technique to extract gg IR from existing applications

 Idea: run the original build system, but replace every stage with a 'model' program that produces a thunk, instead of the actual output.

ShowEine!

Let's see gg in action.

Applications: Software Compilation

• **gg on AWS Lambda** is 2–5× faster than **icecc** outsourcing to a 384-core cluster.

Compiling Inkscape			
icecc to a warm cluster of 48 cores	~7 min	\$2.3/hr	
icecc to a warm cluster of 384 cores	~7 min	\$18.40/hr	
gg to AWS Lambda	~1.5 min	50¢/run	

Compiling Google Chrome takes 16 hours 18 minutes.

Running unit tests for LibVPX takes 1.5 hours 4 minutes.

Encoding a 15-minute 4K video takes 7.5 hours 2.5 minutes.

Rendering a single frame of Monsters University takes (?)

Takeaways

- gg is a framework and a toolkit that makes it practical to outsource everyday applications using thousands of parallel threads on cloudfunctions services.
- We ported several latency-sensitive applications to run on gg: software compilation, unit testing, video encoding, and object recognition.
- For example, gg can speed up compilation by 2-5× compared to a conventional tool (icecc), without requiring a warm cluster.
- gg is open-source software: https://snr.stanford.edu/gg