QZFS: QAT Accelerated Compression in File System for
Application Agnostic and Cost Efficient Data Storage

Xiaokang Hu'2, Fuzong Wang'?, Weigang Li?, Jian Li', Haibing Guan’

" Shanghai Jiao Tong University 2 Intel Asia-Pacific R&D Ltd.

Background &

High-performance
Computing (HPC)

= Powerful computing capabilities for handling Big Data
= Massive storage I/O read/write operations

« Requirement: performance and efficiency of the storage
subsystem

Background

NVMe SSDs NVMe Storage Array

= Remarkable increase of read/write speed with low
energy consumption

G = But: high price

High-performance = Intel® SSD Data Center Family: nearly $500/TB
Computing (HPC)
= Mistral, HPC system for climate research in Germany:

storage subsystem accounts for roughly 20% of TCO.

Background I

|llllllu”
..lllH'I.l

High-performance

Computing (HPC) - 1st benefit: space efficiency = lower TCO

= 25t benefit: reduced I/O ops = higher performance

= But: at the expense of CPU resources

Background

N :
\\Jl ()" Hill'uu»xiu.::'::':l

Accelerators (GPU, FPGA, ASIC)

High-performance
Computing (HPC)

Data Compression Acceleration
P A~

 Compression in different system layers

Application layer File system layer Block layer
* most common * benefit all applications « file system agnostic
* e.g., Nginx, Hadoop * e.g., ZFS, BTRFS * e.9. RedHat VDO

1

Our work: ASIC-based compression offloading

Modern ASIC for cryptography and compression

Type: PCle adapter, chipset, SOC

Performance: up to 100Gbps

Price: low to $32 after put into chipset
Intel® QuickAssist Technology (QAT)

ZFS File System IS

AN T
« ZFS Features SIS
= Roles of both file system and volume manager e S
- Pooled storage (no antique notion of volumes) (2 s P S D LETED (ZFS Volume)
= Transactional operation (always consistent) fransactions on objects
= End-to-end data integrity DMU (Data Management Unit)
= RAID, encryption, compression, ... transaction group commit
= ZFS Record Size SPA (Storage Pool Allocator)
= Define the max size (128KB by default) of a 210 @Fs o)
block that can be processed by ZFS VDEV VDEY VDEV

= Varied block size for compression: 4KB, 36KB,
/0KB, 128KB, ... SSD HDD HDD

QZFS (QAT-Accelerated ZFS)

A~ Emd

= Features

= Integration of Intel® QAT into ZFS for efficient data compression (gzip algo) offloading

Low CPU
utilization

Transparently
benefit ALL apps

High
performance

High space
efficiency

Y

Cost efficiency
* Design considerations

= Compression-related function - 1/O call to interact with QAT
« QAT HW treats data (i.e., physical address and DMA), different from SW (i.e., virtual address)
= Offload overhead; pre-allocated system resources for QAT offloading
HW/SW switch

« Compression/non-compression switch

QZFS Architecture

Gennomes Analysis Genomic Data Post-Proc DNA Sequencing
Application essing Application Application

Lustre Distributed File System

~ 11

—

QZFS
(1)Forward .
ZI0 Reqyests (2)Enter Engine
ZIO > ZIO_Compress — Compression
. .
Module |a—— Module <— Service Engine
A (8)Ready Results (7) ’ (3)Select
JL T L* Algorlthms
e e e O
| | S ‘
Write|Data | |
: Software : QAT Offloading Module
I| Compression | | 1
Read Pata I Library I ? :
I I (5)Consume (4)Submit
: | Responses Requests
................. [2 [S T AT
Intel® QuickAssist Technology
NVMe SSDs Accelerator Firmware

—

QZFS role

= |ocal file system
= back-end of Lustre (distributed)

Z10 module

= |/O requests are abstracted as ZIOs

Z10s are forwarded to other modules

ZIO_Compress module

= data compression and decompression

Two new modules
= Compression Service Engine
QAT Offloading Module

C ion Service Engi
ompression Service Engine A

m

Zlo‘cimpress M°::L':ce) o - Algorithm selector
Result Data i ZLE = QAT-accelerated gzip by default
> heder Tl 1 O - Uniform interface (easily extended)
GZP = Availability: runtime error 2 switch to the
P ion GzIP S software alternative
QZFS |Compression Service Engine OFF

= HW/SW switch by source data size (4KB ~ 1MB)
= < 4KB: benefits offset by offload overhead (QAT requests/responses, PCle transactions, ...)

= > 1MB: large pre-allocated kernel memory as intermediate buffers

= Compressibility-dependent offloading (10% threshold for space saving)
= Low compressibility means that data are not worth being stored in a compressed format

= QOriginal uncompressed data is returned
10

QAT Offloading Module

Data prepared by ZIO uses virtual memory

But QAT HW requires contiguous physical
memory for DMA operations

Data reconstruction: zero memory copy

Vectored 1/O : scatter/gather buffer list (SGL),
partition by page frames

numBuffers = S, >> PAGE_SHIFT + 2
zero buffer handled by QAT

Differentiate vmalloc and direct memory region

Physical page: kmap for long-lasting mapping

RNl
Data Reconstruction
Source Data Pointer
|
I 000 00O
l e] | |
T, L .I [
PAGE SIZE .l N
Scatter Gather Buffer List
| Flat Buffer-.
| pe==———o -)
:| dataLenInByte : N 2V
|| pData +—-»Data ‘Buffer
S - ———————— T ._
FlatBuffer[1] | " =
FatBuffer[2] | dataLenInByte y
pData ——|Data Buffer
[] ‘.‘ v
- | dataLenInByte
FlatBuffer[num pData ——={Data Buffer
Buffers-1]
Input SGL

E.g., 11KB source data = 2KB + 4KB +4KB + 1KB

11

Evaluation

A~ Emd

Lustre cluster with varying nodes

FIO Micro-Benc Scientific Big
hmark Data Workloads .
Four-node cluster: two clients and

?_E'T.'T.'Ti._;._.'T.'T.'TST.'T.'T.'._.'._.'T.'T.'i_'-'_';&_c;;'e_s ''''''''''''''''''''''''''''' " tWO OSSeS (ObJeCt Storage Servers)

Cluster Lustre

Il QZFS 4OGéNIC ‘ 40GNIC| O7Fs IEEI

NVMe-SSDs | Clientl - Client2 | NVMe-ssDs

|
|
|
|
|
|
|
|
|
|
i SWITCH
|
|
|
|
|
|
|
|
|
|

Two benchmarks

= FIO micro-benchmark

= Genomic data post-processing

Cost-efficiency metric

Lustre Lustre
] 06 NIC TS compression_ratio
- AT ZFS ZFS . |I y .
| I Q Q I I cpu_utilization
NVMe-SSDs | OSS1 0SS2 | NVMe-ssDs
SSD Array: three 1.6TB DH8950: 24Gbps

Intel® P3700 NVMe SSDs

FIO Micro-benchmark

= 16 FIO threads in each client with fixed FIO block size

(@)
~
w
o
(@)
~
w
o

e ZLE
o N QAT |{ 25

B OFF e GZIP BN QAT

N
(9]
Ul
~

S
~
N
o

D
~
(-]
9]
Cost Efficiency

N
(@]

o
Cost Efficiency

Throughput (MB/s)
w
~
Throughput (MB/s)
w
~

2k 1 10 2K - 10
1k - 5 1k -5
0- -0 0- -0
SegR SeqW RandR RandW SegR SeqW

OFF 14% 11% 15% 12% LZ4 2.0 13% 22%
GZIP 82% 95% 84% 96% LZJB 2.5 15% 23%
QAT 15% 19% 16% 20% ZLE 1.6 10% 19%
QAT 3.7 14% 17%

compression ratio = 3.5 ~ 3.8 i3

Genomic Data Post-processing

= SAMTools, five operations involving read/write 1/0O

= 8 processes (multi-thread) in one client to manipulate 76GB genomic data

700 70
600~ - 60
0 500 50 >
[} @
£ 3
= 400 - 40 5
0 = =
l 63 /0 = 3001 30 &
-] n
O o
L?xj 2001 20 ©
100 10
0 0
converting viewing sorting merging indexing
GZIP 64% 47% 67% 51% 54%
QAT 7% 4% 8% 13% 11%

compression ratio = 3.4 ~ 4.2

N

o
>
—

Wl

14

Genomic Data Post-processing

A~F=mmd

= QZFS vs. Simple gzip (application layer)

Execution Time (s)

= decompression process: read compressed data & decompression & write uncompressed data

= converting process: read uncompressed data & converting & write new format back

1000

800 A

600 1

4004

2001

A decompression process
XN converting process

Application can achieve similar performance by
integrating well-designed compression module:
fragmentation/compression, multi-thread, QAT ...

But each new application may involve heavy
modifications.

[read/write compressed data
decompression & converting simultaneously

15

Bottleneck Analysis

= FIO highest 4680 MB/s, not achieve hardware limit
= CPU% in two OSSes: 20.2%
= SSD Array throughput: 4680/3.55 = 1318 MB/s < 3314 in OFF case
= NIC (40GbE) throughput: 2340 MB/s = 18.72 Gbps
= QAT throughput: 18.72 Gbps (80% of 24Gbps limit)

= Bottleneck
= # of ZFS worker threads with offloading ability: limited by # of QAT instances

= A worker thread interacts with QAT in synchronous mode: the next compression request
cannot be submitted until the completion of the previous one.

= More FIO threads cannot give rise to more parallel/concurrent QAT requests

16

Asynchronous Offload Mode

A~F=mmd

= Overview
= One thread = one QAT instance
= When: fully utilize QAT accelerator with limited # of threads

= What: one thread can concurrently offload multiple compression tasks
= Async implementation

= Async support in all layers of ZFS software stack to handle an uncompleted task

= Efficient pause (context saving) and resumption (context restoring) of an offload job in one
worker thread

= Re-entering of a same handler: state flag, fiber/coroutine, ...

= Reference: QTLS, a high-performance SSL/TLS asynchronous offload framework
(published in PPoPP ’19)

17

Q&A

 QZFS (into ZFS Linux release): https://github.com/zfsonlinux/zfs

Codes:

* Async Mode Nginx (QTLS): https://github.com/intel/asynch mode nginx
* QATzip Library (similar to zlib): https://github.com/intel/QATzip

Contacts: hxkcmp@sijtu.edu.cn, weigang.li@intel.com

https://github.com/zfsonlinux/zfs
https://github.com/intel/asynch_mode_nginx
https://github.com/intel/QATzip
mailto:hxkcmp@sjtu.edu.cn
mailto:weigang.li@intel.com

