Practical Erase Suspension for
Modern Low-latency SSDs
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Today’s NAND flash-based SSDs in datacenters

* NAND flash-based SSDs have become a de-facto standard in datacenters

— Superior throughput, low average latency, and relatively low price
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Seq. Read > 6300MB/s 4KB Random Read QD1 - 15us - 0.1$/GBEBI
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[1] https://www.samsung.com/semiconductor/ssd/enterprise-ssd/
[2] IEEE ISSCC’18, W. Cheong et al., A flash memory controller for 15us ULL-SSD using high-speed 3D NAND flash with 3us read time
[3] www.amazon.com: SAMSUNG 860QVO 1TB

'a

<&

USENIX ATC 2019 | 2

Architecture and Code Optimization (ARC) Laboratory @ SNU (i

SR



Read tail behavior of NAND flash-based SSD

« Challenge: Despite low average response time, read tail latency can be very long
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Motivation: Two major sources of long read tail latency

- Garbage collection (GC) (e.g., 100ms = 10ms)

— GC-induced read tail latency has been optimized by sophisticated GC schemes

* Block erase operation (e.g., 10ms/block)
— Has become most dominant source of read tail latency

[1] Wu et al, Reducing SSD Read Latency via NAND Flash Program and Erase Suspension, USENIX FAST 2012
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Motivation: Two major sources of long read tail latency

* Block erase operation (e.g., 10ms/block)
— Has become most dominant source of read tail latency

[1] Wu et al, Reducing SSD Read Latency via NAND Flash Program and Erase Suspension, USENIX FAST 2012
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Motivation: Two major sources of long read tail latency

* Block erase operation (e.g., 10ms/block)
— Has become most dominant source of read tail latency

Read request arrived

30us
Read
< < '
Read latency Time
(30us)

[1] Wu et al, Reducing SSD Read Latency via NAND Flash Program and Erase Suspension, USENIX FAST 2012
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Motivation: Two major sources of long read tail latency

* Block erase operation (e.g., 10ms/block)
— Has become most dominant source of read tail latency

Read request arrived

10,000pus 30us
. (rma
>
< >

Read latency Time

(remaining erase time + 30us)

[1] Wu et al, Reducing SSD Read Latency via NAND Flash Program and Erase Suspension, USENIX FAST 2012

;\"4 -\)\b

Architecture and Code Optimization (ARC) Laboratory @ SNU ¢ L‘ﬁﬁl_ﬂ,é USENIX ATC 2019 | 7

A);.(L



Motivation: Two major sources of long read tail latency

* Block erase operation (e.g., 10ms/block)
— Has become most dominant source of read tail latency

— Erase suspensiontl can effectively decrease block erase latency

Read request arrived

100pus
Erase
suspend

30pus

Erase
Erase
resume

Time

Read latency
(130us)

[1] Wu et al, Reducing SSD Read Latency via NAND Flash Program and Erase Suspension, USENIX FAST 2012
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Motivation: Two major sources of long read tail latency

* Block erase operation (e.g., 10ms/block)
— Has become most dominant source of read tail latency

— Erase suspensiontl can effectively decrease block erase latency

However, existing erase suspension can cause
write starvation and NAND reliability problem!

[1] Wu et al, Reducing SSD Read Latency via NAND Flash Program and Erase Suspension, USENIX FAST 2012
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Our contributions: Practical erase suspension

« Observation

— Modern SSDs perform erase operation with multiple discrete pulses to provide well-aligned safe

points for suspending an ongoing erase
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Our contributions: Practical erase suspension

« Observation

— Modern SSDs perform erase operation with multiple discrete pulses to provide well-aligned safe
points for suspending an ongoing erase

« We propose three practical erase suspension schemes

4 Arrival of read request
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Our contributions: Practical erase suspension

« Observation

— Modern SSDs perform erase operation with multiple discrete pulses to provide well-aligned safe
points for suspending an ongoing erase

« We propose three practical erase suspension schemes

— Immediate erase suspension (I-ES): Aborts erase immediately and restarts from previous safe-point
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Our contributions: Practical erase suspension

« Observation
— Modern SSDs perform erase operation with multiple discrete pulses to provide well-aligned safe
points for suspending an ongoing erase
« We propose three practical erase suspension schemes
— Immediate erase suspension (I-ES): Aborts erase immediately and restarts from previous safe-point

— Deferred erase suspension (D-ES): Waits until the current erase pulse is finished

4 Arrival of read request
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Our contributions: Practical erase suspension

« Observation
— Modern SSDs perform erase operation with multiple discrete pulses to provide well-aligned safe
points for suspending an ongoing erase
« We propose three practical erase suspension schemes
— Immediate erase suspension (I-ES): Aborts erase immediately and restarts from previous safe-point
— Deferred erase suspension (D-ES): Waits until the current erase pulse is finished

— Timeout-based erase suspension (T-ES): Adaptively switches between |I-ES and D-ES

4 Arrival of read request
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Prior work: Problems with existing erase suspensionl'l (1)

* Problem #1: Write starvation
— With bursty reads

Read #1 arrived Read #2 arrived
1,000us

100pus 30us 100pus 30us
E Erase Read
rase suspend #2

Erase

suspend resume

Erase
1) Remaining erase pulse (9ms) may fail to make a progress by incoming reads

Erase (and Write) Starvation!

[1] Wu et al, Reducing SSD Read Latency via NAND Flash Program and Erase Suspension, USENIX FAST 2012
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Prior work: Problems with existing erase suspensionl'] (2)

 Problem #2: Endurance degradation
— With bursty reads

Read #1 arrived Read #2 arrived

100pus 30us 100pus 30us
Erase Read
suspend #2

Erase

suspend resume

Erase
2) Erase suspension/resumption causes additional stress to NAND

Over-erase NAND blocks = Increase uncorrectable bit error rate (UBER)

Endurance degradation of SSD!

[1] Wu et al, Reducing SSD Read Latency via NAND Flash Program and Erase Suspension, USENIX FAST 2012
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Practical erase suspension: Background

« NAND erase operation

— Pulls electrons out of floating gate by applying very high voltage
* Incremental Step Pulse Erasing (ISPE)

— Standard technique to minimize damages on NAND cells

— Applying several, discrete pulses (of ~1ms) with increasingly higher nominal voltages
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Practical erase suspension: Immediate erase suspension (I-ES)

* |-ES operations
— Suspend: Immediately terminates ongoing erase step (taking ~ 100us)

— Resume: Restarts the suspended erase pulse from the beginning
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Practical erase suspension: Immediate erase suspension (I-ES)

* |-ES operations
— Suspend: Immediately terminates ongoing erase step (taking ~ 100us)

— Resume: Restarts the suspended erase pulse from the beginning
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Practical erase suspension: Immediate erase suspension (I-ES)

* |-ES operations
— Suspend: Immediately terminates ongoing erase step (taking ~ 100us)

— Resume: Restarts the suspended erase pulse from the beginning
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Practical erase suspension: Immediate erase suspension (I-ES)

* |-ES operations
— Suspend: Immediately terminates ongoing erase step (taking ~ 100us)

— Resume: Restarts the suspended erase pulse from the beginning

>
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o
>
(@é) Nth
LLl RS Loop
* T(B) READ >
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Practical erase suspension: Immediate erase suspension (I-ES)

* |-ES operations
— Suspend: Immediately terminates ongoing erase step (taking ~ 100us)

— Resume: Restarts the suspended erase pulse from the beginning
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Practical erase suspension: Immediate erase suspension (I-ES)

* |-ES operations
— Suspend: Immediately terminates ongoing erase step (taking ~ 100us)

— Resume: Restarts the suspended erase pulse from the beginning
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Practical erase suspension: Immediate erase suspension (I-ES)

* |-ES operations

— Does not guarantee forward progress of erase operation - Write starvation problem!

>10s >10s

Tms

Baseline Original ES I-ES

Write Tail Latency
FIO Thread #1: 128KB Read QD1, Thread #2: 128KB Write QD1
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Practical erase suspension: Deferred erase suspension (D-ES)

 D-ES operations
— Suspend: Waits until current erase step is finished (erase and verify pulse)

— Resume: Start the next erase pulse

>

(1) Arrival of read request

ERS Voltage

ERS|Loop
/— >

Time (ms)

[\ : Erase pulse
[ : Verify pulse
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Practical erase suspension: Deferred erase suspension (D-ES)

 D-ES operations
— Suspend: Waits until current erase step is finished (erase and verify pulse)

— Resume: Start the next erase pulse
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Practical erase suspension: Deferred erase suspension (D-ES)

 D-ES operations
— Suspend: Waits until current erase step is finished (erase and verify pulse)

— Resume: Start the next erase pulse
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Practical erase suspension: Deferred erase suspension (D-ES)

 D-ES operations
— Suspend: Waits until current erase step is finished (erase and verify pulse)

— Resume: Start the next erase pulse
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Practical erase suspension: Deferred erase suspension (D-ES)

 D-ES operations

— No erase and write starvation problem, but longer read tail! (i.e., length of single step, ~ 1ms)
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Practical erase suspension: Timeout-based erase suspension (T-ES)

 T-ES operations
1. Performs I-ES until erase operation is suspended for a timeout period (N ms)

2. If atimeout happens, switches to D-ES to avoid erase and write starvation
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Practical erase suspension: Timeout-based erase suspension (T-ES)

 T-ES operations
1. Performs |I-ES until erase operation is suspended for a timeout period (N ms)

2. If atimeout happens, switches to D-ES to avoid erase and write starvation

* Choice of erase timeout period (N)
— Provides an effective control knob for read/write latency

— Trades maximum write tail latency for reduced read latency

Ex) N = 64ms,and GC Write Latency = 35ms

v

Maximum Write Latency < 100ms
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Evaluation: Methodology

 NVMe SSD simulator: MQSim[!
« Benchmarks: Flexible I/O Tester, Aerospike Certification Tool (ACT) and TPC-C

« Comparison of six designs:
— Baseline (no suspension) and Ideal-ES (erase suspension with zero penalty)
— Erase suspension (ES)
— Immediate-ES (I-ES), Deferred-ES (D-ES), and, Timeout-based-ES (T-ES)
PCle Gen 3 X 4 Lane, 240GB, NVMe SSD Device
NAND Configurations 4 channels, 4 chips/channel, 1die/chip

FTL Schemes Page Mapping, Preemptible GC
NAND Latency

Read: 3us, Program: 100us, Block Erase: 1ms per step (5 steps),
Erase Suspension Penalty: 100us, T-ES timeout: 64ms

[1] Tavakkol et al, MQSim: A framework for enabling realistic studies of modern multi-queue SSD devices, USENIX FAST 2018
[2] Wu et al, Reducing SSD Read Latency via NAND Flash Program and Erase Suspension, USENIX FAST 2012
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Evaluation: Flexible I/O Tester (FIO)

* FIO random test
— Read 70%, Write 30%, 4KB QD 16
B Baseline OES Ol-ES mD-ES mT-ES m Ideal-ES

10000 - 100000 ~ —
/('D\ - —
3 _
31ooo| H | H | H IT|—L10000 Iﬂ_l[
C
Q
®
—
100 - 1000 -
99.9%  99.99% 99.999%  Max. 99.9%  99.99% 99.999%  Max.
(a) Read tail latency (b) Write tail latency

o Baseline - ~5ms (entire erase operation)

_ o I-ES, T-ES - Long write latency due to
o D-ES - ~1ms (single erase pulse)

repeated erase suspension
o ES, I-ES, T-ES - ~100us (suspension latency)
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Evaluation: Aerospike Certification Tool (ACT)

« ACT: Database benchmark

— Consists of three threads, and gradually increases /O rate in integer multiples

ACT workload

o T1: 2K small (1.5KB, QD1) reads/s o T1: 8K small reads/s

o T2:24 large (128KB, QD1) reads/s |$ X 4 |$ o T2:96 large reads/s
o T3:24 large (128KB, QD1) writes/s o T3:96 large writes/s

Test Item Evaluation Criteria SSF)n#1 8%2

i) 95% of 1/0 < 1ms
Performance Test | ii) 99% of /O < 8ms 10X 8 X
iii) 99.9% of I/0O < 64ms

Stress Test iv) 1/0 latency < request period 2X 10X
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Evaluation: Aerospike Certification Tool (ACT)

« ACT test results

— Baseline shows poor performance test result (14x) due to long-tail latency of read request

— ES and I-ES suffer write starvation problem (22x)

— D-ES and T-ES demonstrate good results (30x) for both stress and performance tests

m Baseline OES ol-ES mD-ES mT-ES mldeal-ES

10000 | | | 10000 ‘ ‘ —
2 1000 = 5 - 1000 = = =
> £ = k= = < 'c
O = Y = = L= =
8 B = E g E E
© 100 - - —l - 100 i - °
il i LR BE

95% 99% 99.9% 95% 99% 99.9%

(a) Read tail latency (b) Write tail latency

30x workload multiplier
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Evaluation: Transaction processing benchmark (TPC-C)

« TPC-C from SNIA

m Baseline OES OI-ES o D-ES mT-ES m ldeal-ES

100000
10000 ¢ | | | | | | |
B 10000
< < < < < = < = £
) i 1D D 2 i 0 2
21000 +ll £ E E = E E £ =
: : l : —i : —i : e : : :
@© 5= o o ° o o ) o
— 1 B a 5 a I 5 I 5 I a Io
100 - 1 1 1 | 100 | | | I
99.9%  99.99% 99.999%  Max. 99.9%  99.99% 99.999%  Max.
(a) Read tail latency (b) Write tail latency

o Baseline - ~5ms (entire operation)

o D-ES, T-ES - ~1ms (single erase pulse) o T-ES - Timeout (64ms) + GC latency (24ms)

o ES, I-ES - Failure by write command timeout
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Conclusion

* Practical erase suspension harnesses the full potential of NAND flash-based SSDs
— Minimizes the impact of erase operation on read tail latency

— Achieves very low read tail latency without write starvation and endurance degradation

Read Tail Latency
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Thank You!

Our simulator is available at
https://github.com/SNU-ARC/MQSim-Practical-ERS-SUS
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