
Architecture and Code Optimization (ARC) Laboratory @ SNU USENIX ATC 2019USENIX ATC 2019, RENTON, WA, USAJuly 12th, 2019

Practical Erase Suspension for 
Modern Low-latency SSDs 

Shine Kim†§ Jonghyun Bae† Hakbeom Jang*  Wenjing Jin† Jeonghun Gong†

Seoungyeon Lee§ Tae Jun Ham† Jae W. Lee†

†Seoul National University §Samsung Electronics *Sungkyunkwan University



Architecture and Code Optimization (ARC) Laboratory @ SNU USENIX ATC 2019

Today’s NAND flash-based SSDs in datacenters
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• NAND flash-based SSDs have become a de-facto standard in datacenters
− Superior throughput, low average latency, and relatively low price 

PCIe Gen 3 X 8 lane NVMe SSD[1]

Seq. Read à 6300MB/s
Low Latency SSD Controller with LL-NAND[2]

4KB Random Read QD1 à 15µs
3D NAND & QLC-based SSD

à 0.1$/GB[3]
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[1] https://www.samsung.com/semiconductor/ssd/enterprise-ssd/
[2] IEEE ISSCC’18, W. Cheong et al., A flash memory controller for 15us ULL-SSD using high-speed 3D NAND flash with 3us read time
[3] www.amazon.com: SAMSUNG 860QVO 1TB
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Read tail behavior of NAND flash-based SSD
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• Challenge: Despite low average response time, read tail latency can be very long 
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Read latency distribution of a PCIe 3 X 4 NVMe low-latency SSD, 4KB, Queue Depth 16, 70% reads and 30% writes
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Motivation: Two major sources of long read tail latency
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[1] Wu et al, Reducing SSD Read Latency via NAND Flash Program and Erase Suspension, USENIX FAST 2012

• Garbage collection (GC) (e.g., 100ms à 10ms)

− GC-induced read tail latency has been optimized by sophisticated GC schemes

• Block erase operation (e.g., 10ms/block) 

− Has become most dominant source of read tail latency 
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Motivation: Two major sources of long read tail latency
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[1] Wu et al, Reducing SSD Read Latency via NAND Flash Program and Erase Suspension, USENIX FAST 2012

• Garbage collection (GC) (e.g., 100ms à 10ms)

− GC-induced read tail latency has been optimized by sophisticated GC schemes

• Block erase operation (e.g., 10ms/block)

− Has become most dominant source of read tail latency
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Motivation: Two major sources of long read tail latency
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[1] Wu et al, Reducing SSD Read Latency via NAND Flash Program and Erase Suspension, USENIX FAST 2012

Erase

• Garbage collection (GC) (e.g., 100ms à 10ms)

− GC-induced read tail latency has been optimized by sophisticated GC schemes

• Block erase operation (e.g., 10ms/block)

− Has become most dominant source of read tail latency 
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Erase   

Motivation: Two major sources of long read tail latency
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[1] Wu et al, Reducing SSD Read Latency via NAND Flash Program and Erase Suspension, USENIX FAST 2012

• Garbage collection (GC) (e.g., 100ms à 10ms)

− GC-induced read tail latency has been optimized by sophisticated GC schemes

• Block erase operation (e.g., 10ms/block)

− Has become most dominant source of read tail latency 

− Erase suspension[1] can effectively decrease block erase latency
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Motivation: Two major sources of long read tail latency
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However, existing erase suspension can cause
write starvation and NAND reliability problem! 

[1] Wu et al, Reducing SSD Read Latency via NAND Flash Program and Erase Suspension, USENIX FAST 2012

• Garbage collection (GC) (e.g., 100ms à 10ms)

− GC-induced read tail latency has been optimized by sophisticated GC schemes

• Block erase operation (e.g., 10ms/block)

− Has become most dominant source of read tail latency 

− Erase suspension[1] can effectively decrease block erase latency
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Our contributions: Practical erase suspension
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• Observation 
− Modern SSDs perform erase operation with multiple discrete pulses to provide well-aligned safe 

points for suspending an ongoing erase

: Erase pulse
: Verify pulse
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Our contributions: Practical erase suspension
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• Observation 
− Modern SSDs perform erase operation with multiple discrete pulses to provide well-aligned safe 

points for suspending an ongoing erase

• We propose three practical erase suspension schemes

Arrival of read request

: Erase pulse
: Verify pulse
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Our contributions: Practical erase suspension
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• Observation 
− Modern SSDs perform erase operation with multiple discrete pulses to provide well-aligned safe 

points for suspending an ongoing erase

• We propose three practical erase suspension schemes
− Immediate erase suspension (I-ES): Aborts erase immediately and restarts from previous safe-point

Arrival of read request

: Erase pulse
: Verify pulse
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Our contributions: Practical erase suspension
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• Observation 
− Modern SSDs perform erase operation with multiple discrete pulses to provide well-aligned safe 

points for suspending an ongoing erase

• We propose three practical erase suspension schemes
− Immediate erase suspension (I-ES): Aborts erase immediately and restarts from previous safe-point

− Deferred erase suspension (D-ES): Waits until the current erase pulse is finished

Arrival of read request

: Erase pulse
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Our contributions: Practical erase suspension
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• Observation 
− Modern SSDs perform erase operation with multiple discrete pulses to provide well-aligned safe 

points for suspending an ongoing erase

• We propose three practical erase suspension schemes
− Immediate erase suspension (I-ES): Aborts erase immediately and restarts from previous safe-point

− Deferred erase suspension (D-ES): Waits until the current erase pulse is finished

− Timeout-based erase suspension (T-ES): Adaptively switches between I-ES and D-ES

Arrival of read request

: Erase pulse
: Verify pulse
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Prior work: Problems with existing erase suspension[1] (1)

15

• Problem #1: Write starvation

− With bursty reads

Read 
#1  

Erase
suspend

[1] Wu et al, Reducing SSD Read Latency via NAND Flash Program and Erase Suspension, USENIX FAST 2012

Erase

Read #1 arrived Read #2 arrived 

Erase
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Read 
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Erase
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…∞1,000µs

1) Remaining erase pulse (9ms) may fail to make a progress by incoming reads 

Erase (and Write) Starvation!
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Prior work: Problems with existing erase suspension[1] (2)
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• Problem #2: Endurance degradation

− With bursty reads 

[1] Wu et al, Reducing SSD Read Latency via NAND Flash Program and Erase Suspension, USENIX FAST 2012

2) Erase suspension/resumption causes additional stress to NAND

Over-erase NAND blocks à Increase uncorrectable bit error rate (UBER)

Endurance degradation of SSD!

Read 
#1  

Erase
suspendErase
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Practical erase suspension: Background
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• NAND erase operation

− Pulls electrons out of floating gate by applying very high voltage

• Incremental Step Pulse Erasing (ISPE)

− Standard technique to minimize damages on NAND cells 

− Applying several, discrete pulses (of ~1ms) with increasingly higher nominal voltages

Time (ms)

: Erase pulse
- Erase cells in a NAND block

: Verify pulse 
- Sense which cells are erased
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Practical erase suspension: Immediate erase suspension (I-ES)
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• I-ES operations

− Suspend: Immediately terminates ongoing erase step (taking ~ 100µs)

− Resume: Restarts the suspended erase pulse from the beginning
ER
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: Erase pulse
: Verify pulse
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Practical erase suspension: Immediate erase suspension (I-ES)
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• I-ES operations

− Suspend: Immediately terminates ongoing erase step (taking ~ 100µs)

− Resume: Restarts the suspended erase pulse from the beginning
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Practical erase suspension: Immediate erase suspension (I-ES)
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• I-ES operations

− Suspend: Immediately terminates ongoing erase step (taking ~ 100µs)

− Resume: Restarts the suspended erase pulse from the beginning
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Practical erase suspension: Immediate erase suspension (I-ES)
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• I-ES operations

− Suspend: Immediately terminates ongoing erase step (taking ~ 100µs)

− Resume: Restarts the suspended erase pulse from the beginning
ER
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Practical erase suspension: Immediate erase suspension (I-ES)
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• I-ES operations

− Suspend: Immediately terminates ongoing erase step (taking ~ 100µs)

− Resume: Restarts the suspended erase pulse from the beginning

: Erase pulse
: Verify pulse
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Practical erase suspension: Immediate erase suspension (I-ES)
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• I-ES operations

− Suspend: Immediately terminates ongoing erase step (taking ~ 100µs)

− Resume: Restarts the suspended erase pulse from the beginning
ER
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(3) READ
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: Verify pulse
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Practical erase suspension: Immediate erase suspension (I-ES)
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• I-ES operations

− Suspend: Immediately terminates ongoing erase step (taking ~ 100µs)

− Resume: Restarts the suspended erase pulse from the beginning

− Does not guarantee forward progress of erase operation à Write starvation problem!

1ms

Baseline Original ES I-ES
Write Tail Latency 

>10s >10s

FIO Thread #1: 128KB Read QD1, Thread #2: 128KB Write QD1
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Practical erase suspension: Deferred erase suspension (D-ES)
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• D-ES operations

− Suspend: Waits until current erase step is finished (erase and verify pulse)

− Resume: Start the next erase pulse
ER
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(1) Arrival of read request

: Erase pulse
: Verify pulse

Time (ms)
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Practical erase suspension: Deferred erase suspension (D-ES)
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• D-ES operations

− Suspend: Waits until current erase step is finished (erase and verify pulse)

− Resume: Start the next erase pulse
ER
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(2) Erase 
suspend

: Erase pulse
: Verify pulse
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Practical erase suspension: Deferred erase suspension (D-ES)
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• D-ES operations

− Suspend: Waits until current erase step is finished (erase and verify pulse)

− Resume: Start the next erase pulse
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: Verify pulse
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Practical erase suspension: Deferred erase suspension (D-ES)
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• D-ES operations

− Suspend: Waits until current erase step is finished (erase and verify pulse)

− Resume: Start the next erase pulse
ER
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(3) READ
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Practical erase suspension: Deferred erase suspension (D-ES)
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• D-ES operations

− Suspend: Waits until current erase step is finished (erase and verify pulse)

− Resume: Start the next erase pulse

− No erase and write starvation problem, but longer read tail! (i.e., length of single step, ~ 1ms)
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Practical erase suspension: Timeout-based erase suspension (T-ES)
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• T-ES operations

1. Performs I-ES until erase operation is suspended for a timeout period (N ms)

2. If a timeout happens, switches to D-ES to avoid erase and write starvation
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Practical erase suspension: Timeout-based erase suspension (T-ES)
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• T-ES operations

1. Performs I-ES until erase operation is suspended for a timeout period (N ms)

2. If a timeout happens, switches to D-ES to avoid erase and write starvation

• Choice of erase timeout period (N)

− Provides an effective control knob for read/write latency

− Trades maximum write tail latency for reduced read latency

!"#$%&%'($)* +")*,-. ≤ 100%2

Ex) 3 = 64%2, ",8 9: '($)* +")*,-. = 35%2
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Evaluation: Methodology

32

• NVMe SSD simulator: MQSim[1]

• Benchmarks: Flexible I/O Tester, Aerospike Certification Tool (ACT) and TPC-C

• Comparison of six designs:
− Baseline (no suspension) and Ideal-ES (erase suspension with zero penalty)

− Erase suspension (ES)[2]

− Immediate-ES (I-ES), Deferred-ES (D-ES), and, Timeout-based-ES (T-ES)

PCIe Gen 3 X 4 Lane, 240GB, NVMe SSD Device

NAND Configurations 4 channels, 4 chips/channel, 1die/chip

FTL Schemes Page Mapping, Preemptible GC

NAND Latency

Read: 3μs, Program: 100μs, Block Erase: 1ms per step (5 steps),
Erase Suspension Penalty: 100μs, T-ES timeout: 64ms

[1] Tavakkol et al, MQSim: A framework for enabling realistic studies of modern multi-queue SSD devices, USENIX FAST 2018
[2] Wu et al, Reducing SSD Read Latency via NAND Flash Program and Erase Suspension, USENIX FAST 2012
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Evaluation: Flexible I/O Tester (FIO)
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• FIO random test
− Read 70%, Write 30%, 4KB QD 16
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o Baseline à ~5ms (entire erase operation)

o D-ES à ~1ms (single erase pulse)

o ES, I-ES, T-ES à ~100µs (suspension latency) 

o I-ES, T-ES à Long write latency due to

repeated erase suspension
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Evaluation: Aerospike Certification Tool (ACT)
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• ACT: Database benchmark 

− Consists of three threads, and gradually increases I/O rate in integer multiples

x 4
o T1: 8K small reads/s
o T2: 96 large reads/s
o T3: 96 large writes/s 

o T1: 2K small (1.5KB, QD1) reads/s
o T2: 24 large (128KB, QD1) reads/s
o T3: 24 large (128KB, QD1) writes/s

ACT workload

Test Item Evaluation Criteria SSD #1 SSD #2

Performance Test
i) 95% of I/O < 1ms
ii) 99% of I/O < 8ms
iii) 99.9% of I/O < 64ms

10X 8X

Stress Test iv) I/O latency < request period 2X 10X

==
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Evaluation: Aerospike Certification Tool (ACT)
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• ACT test results

− Baseline shows poor performance test result (14x) due to long-tail latency of read request 

− ES and I-ES suffer write starvation problem (22x)

− D-ES and T-ES demonstrate good results (30x) for both stress and performance tests
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30x workload multiplier
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Evaluation: Transaction processing benchmark (TPC-C)
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• TPC-C from SNIA 

100

1000

10000

99.9% 99.99% 99.999% Max.

Baseline ES I-ES D-ES T-ES Ideal-ES

100

1000

10000

100000

99.9% 99.99% 99.999% Max.

La
te

nc
y 

(!
s)

(a) Read tail latency (b) Write tail latency

D
id

  n
o

t 
 f

in
is

h

D
id

  n
o

t 
 f

in
is

h

D
id

  n
o

t 
 f

in
is

h

D
id

  n
o

t 
 f

in
is

h

D
id

  n
o

t 
 f

in
is

h

D
id

  n
o

t 
 f

in
is

h

D
id

  n
o

t 
 f

in
is

h

D
id

  n
o

t 
 f

in
is

h

o Baseline à ~5ms (entire operation)

o D-ES, T-ES à ~1ms (single erase pulse)

o ES, I-ES à Failure by write command timeout

o T-ES à Timeout (64ms) + GC latency (24ms)
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Conclusion
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• Practical erase suspension harnesses the full potential of NAND flash-based SSDs
− Minimizes the impact of erase operation on read tail latency

− Achieves very low read tail latency without write starvation and endurance degradation
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Thank You!
Our simulator is available at

https://github.com/SNU-ARC/MQSim-Practical-ERS-SUS


