ElasticBF: Elastic Bloom Filter with Hotness Awareness for Boosting Read Performance in Large Key-Value Stores

Yongkun Li, Chengjin Tian, Fan Guo, Cheng Li, Yinlong Xu
University of Science and Technology of China
USENIX ATC 2019

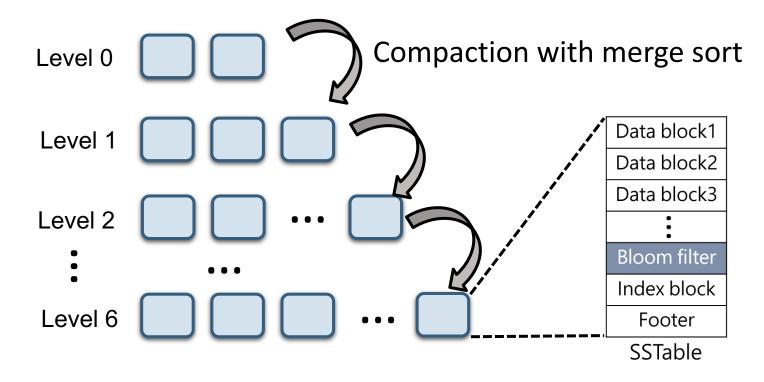
Background

- ➤ Key-value (KV) store has become an important storage engine for many applications
 - Cloud storage
 - Social networks
 - NewSQL database
- ➤ Examples of KV stores
 - Hbase @ Apache
 - LevelDB @ Google
 - RocksDB @ Facebook

•

LSM-tree-based KV Stores

The most common design of KV stores is based on LSM-tree (log structured merge tree)

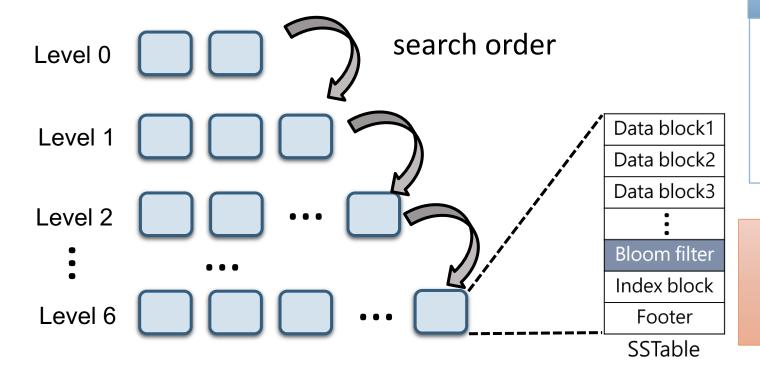


Design Highlights
Layering
Log-structured writes
Sorted in each level

LSM-tree-based KV Stores

The most common design of KV stores is based on LSM-tree (log

structured merge tree)



Read Amplification!!!

Key lookup: Check SSTables from lower levels to higher levels, one from each level (sorted)

Bloom Filters

improve read performance (also cached in memory)

Limitation of Bloom Filters

- ➤ Bloom filters suffer from false positive rate
 - False positive rate (FPR): 0.6185^b (b: Bits-per-key)

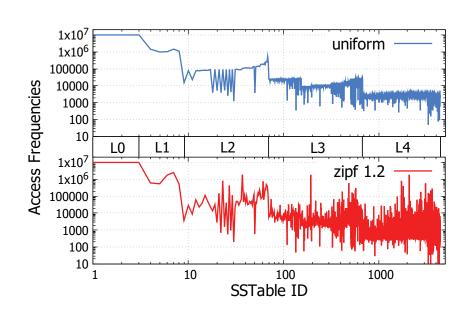
Bits-per-key	2bits	3bits	4bits	5bits	6bits
FPR	38.3%	23.7%	14.6%	9.1%	5.6%

- How to reduce false positive rate?
 - Allocate more bits for each key
 - Incur large memory overhead (as Bloom filters are cached in memory)

Question: how to improve the Bloom filter design with limited memory cost?

Main Idea

- **≻Observation**: unevenness of access frequencies
 - Vary from different levels, SSTables, or even different regions within an SSTable

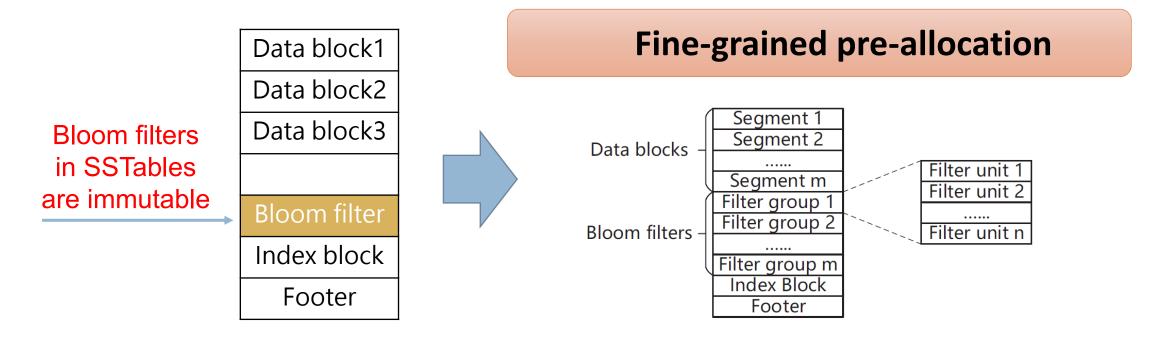


Hot SSTables
More bits/key
Lower FPR

Cold SSTables
Fewer bits/key
Limited mem. usage

ElasticBF: Elastic Bloom filter management with locality awareness

>Challenge 1: fixed data organization in SSTables limits BF adjustment



Rationale: Separability (Multiple filters have the same FPR as a single filter with the same bits-per-key, i.e., $\prod_{i=1}^n 0.6185^{b_i} = 0.6185^b$ ($\sum_{i=1}^n b_i = b$))

> Challenge 2: How to determine the most appropriate number of filter units for each SSTable and how to realize dynamical adjustment?

Determine: Cost-benefit analysis

Adjust Bloom filters only when the expected number of I/Os caused by false positive $E[Extra_IO]$ can be reduced

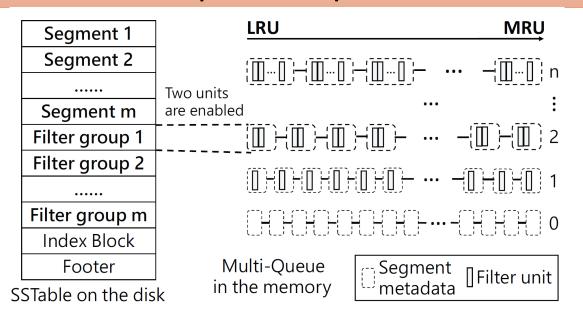
$$E[Extra_IO] = \sum_{i=1}^{M} f_i * r_i$$
• M : # of segments in the system
• f_i : access frequency of segment i
• r_i : false positive rate of the BF allowed

- r_i : false positive rate of the BF allocated for seg. i

➤ Challenge 2: How to determine the most appropriate number of filter units for each SSTable and how to realize dynamical adjustment?

Adjust: in-memory multi-queue

Multiple LRU queues to realize dynamical adjustment

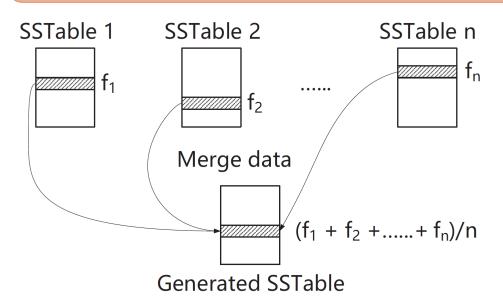


- **Upgrade:** each time when a segment is accessed, move to the MRU side
- **Downgrade:** search an "expired" segments from Q_n to Q_1 and move it to the next lower-level queue if $E[Extra_IO]$ can be reduced by releasing one filter unit

➤ Challenge 3: Writes in mixed workloads may reset the hotness information (as compaction creates new SSTables)

Hotness inheritance

Estimate the hotness of new segments after compaction



- 1 Find out involved old segments
- ② Estimate using the mean of the hotness of old segments
- 3 Enable an appropriate number of filter units based on the estimated hotness

Performance Evaluation

- ➤ We implement ElasticBF in various KV stores: LevelDB/RocksDB/PebblesDB
- >Experiment setting
 - Machine

CPU	Mem/Disk	OS
Dell PowerEdge R730 12-cores Intel Xeon CPU E5- 2650 v4 with 2.20GHz	64GB RAM 500GB SSD and 1TB 7200RPM HDD	Ubuntu 16.04 OS with Linux 4.15 kernel

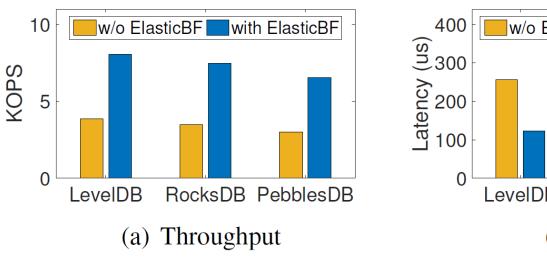
Micro-benchmarks: workloads generated by YCSB-C

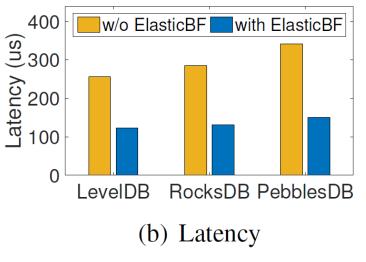
Size of	Size of	Request	Zipfian	Zero lookup/	# of
KV pair	database	Distribution	skew	Non-zero lookup	Get Req
1KB	100/400 GB	zipfian/uniform	0.99/1.1/1.2	1:1	

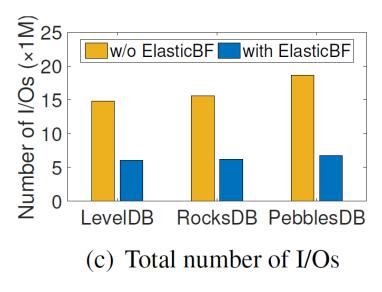
YCSB benchmarks (six core workloads)

Micro-benchmarks

- ➤ How much improvement does ElasticBF achieve?
 - Compare read performance w/ and w/o ElasticBF (10M GET requests)

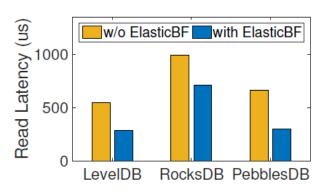




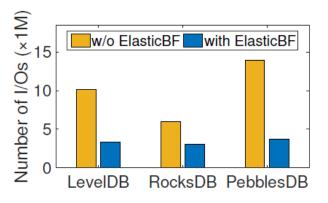


ElasticBF increases the read throughput to >2x and reduces the latency by >50%, and also reduces the # of I/Os by ~60%

Micro-benchmarks

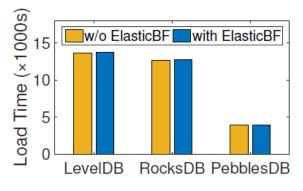


(a) Read latency (50% reads)

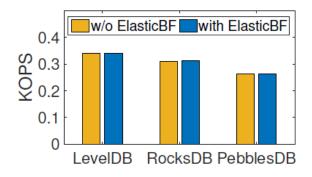


(b) Number of I/Os (50% reads)

- ➤ Mixed workload
 - Still remarkable improvement



(a) Time to load the KV store

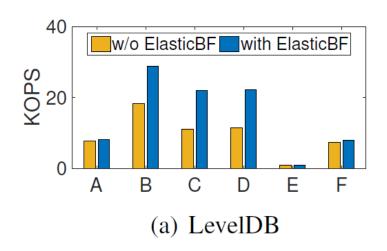


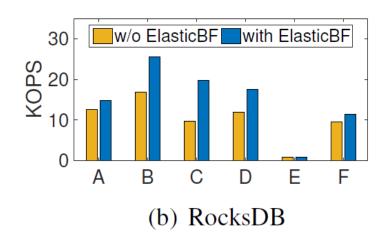
(b) Throughput of range query

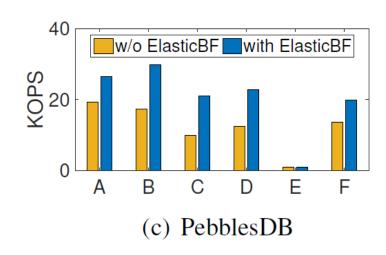
- ➤ PUT and SCAN performance
 - Negligible impact

YCSB Benchmarks

>YCSB benchmarks



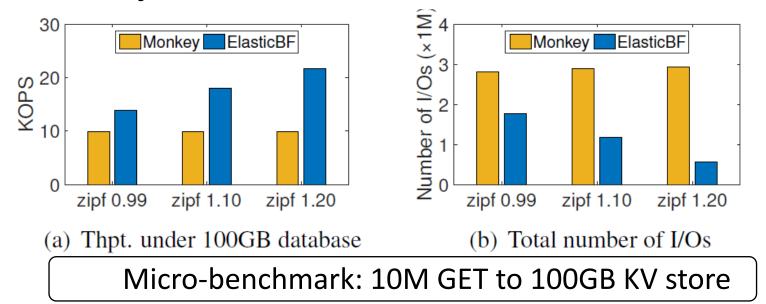




ElasticBF improves read throughput under read-dominant workloads (B: 95% read, C: 100% read, D: 95% read)

Comparison with Monkey

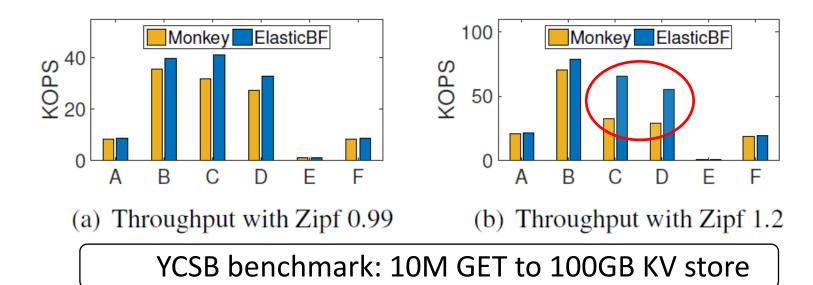
➤ Monkey: coarse-grained scheme (even BF allocation in each level) w/o dynamical adjustment



ElasticBF further increases the throughput to $1.39 \times -2.20 \times$

Comparison with Monkey

➤ Monkey: coarse-grained scheme (even BF allocation in each level) w/o dynamical adjustment

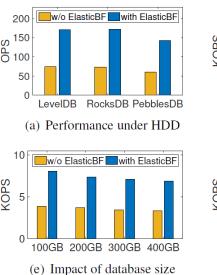


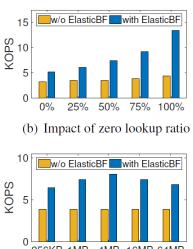
ElasticBF further increases the throughput up to ~2× under read-dominant workloads with high skewness

Impact of System Configurations

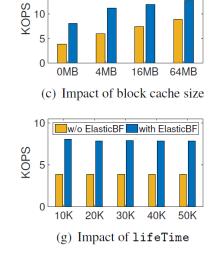
≻Impact of

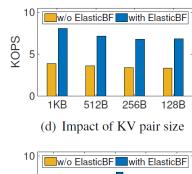
- Hard disk
- Zero lookup ratio
- Block cache size
- KV pair size
- Database size
- Segment size
- Filter unit size

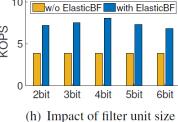




(f) Impact of segment size







➤ Please refer to our paper for detailed results

Conclusion

- ➤ LSM-tree based KV stores suffer from read amplification problem
 - Bloom filters reduce extra I/Os and improve read performance
 - Uniform Bloom filter design either suffers from high false positive rate or incurs large memory overhead

➤ We develop ElasticBF

- An elastic scheme to dynamically adjust Bloom filters, so it improves read performance with limited memory
- Orthogonal to the optimizations of the LSM-tree structure, so it can be deployed in various existing KV stores

Thanks for your attention!

For any questions, please feel free to contact Prof. Yongkun Li@USTC

ykli@ustc.edu.cn

http://staff.ustc.edu.cn/~ykli/