
ElasticBF: Elastic Bloom Filter with
Hotness Awareness for Boosting Read
Performance in Large Key-Value Stores

Yongkun Li, Chengjin Tian, Fan Guo, Cheng Li, Yinlong Xu
University of Science and Technology of China

USENIX ATC 2019

Background

ØKey-value (KV) store has become an important storage engine for
many applications
� Cloud storage
� Social networks
� NewSQL database

ØExamples of KV stores
� Hbase @ Apache
� LevelDB @ Google
� RocksDB @ Facebook
� …

2

LSM-tree-based KV Stores

ØThe most common design of KV stores is based on LSM-tree (log
structured merge tree)

3

Level 0

Level 1

Level 6 …

…Level 2 …
…

Compaction with merge sort

Design Highlights
Layering

Log-structured writes
Sorted in each level

LSM-tree-based KV Stores

ØThe most common design of KV stores is based on LSM-tree (log
structured merge tree)

4

Level 0

Level 1

Level 6 …

…Level 2 …
…

search order
Read Amplification!!!

Key lookup: Check
SSTables from lower levels
to higher levels, one from

each level (sorted)

Bloom Filters
improve read performance

(also cached in memory)

Limitation of Bloom Filters

ØBloom filters suffer from false positive rate
� False positive rate (FPR)：0.6185' (b: Bits-per-key)

� How to reduce false positive rate?
� Allocate more bits for each key
� Incur large memory overhead (as Bloom filters are cached in memory)

5

Bits-per-key 2bits 3bits 4bits 5bits 6bits

FPR 38.3% 23.7% 14.6% 9.1% 5.6%

Question: how to improve the Bloom filter design with limited memory cost?

Main Idea

ØObservation: unevenness of access frequencies
� Vary from different levels, SSTables, or even different regions within an SSTable

6

Later, Immutable Memtable will be packed into an SSTable
and appended into L0 in the secondary storage. Note that keys
in each SSTable are sorted, but they are not sorted between
SSTables in L0 so as to make the writes to disk fast. Thus,
this write policy degrades read performance, so the size of
L0 is usually limited, e.g., it is limited as 12 SSTables in
LevelDB. To balance read and write performance, SSTables
are organized into a multi-level tree, and if one level (say
Li�1) is filled up, its SSTables will be merged into its higher
level (say Li) by compaction, which merges all KV pairs in
Li�1 into Li, so data are sorted in every level except for L0.

To find a key in the secondary storage, we need to search
it level by level from L0 to Lk. Note that we should check
all SSTables in L0 because they are not sorted, while we only
need to check one SSTable in each of the other levels until
we find the key or all levels are checked. Thus, we usually
need to read multiple SSTables to find a key, which induces
read amplification, and Bloom filters are commonly used to
reduce the read amplification. As a result, besides KV pairs,
each SSTable also includes Bloom filters and other metadata
(see Figure 1). For performance consideration, the Bloom
filters are usually required to be also buffered in memory.

However, Bloom filters suffer from false positive because
of hash collision, and thus incur extra I/Os to read out data
from SSTables for key comparison. The false positive rate of
a Bloom filter is (1� e

�k/b)k, where b is the number of bits
allocated to each key, i.e., bits-per-key, and k means the
number of hash functions [24]. Since (1 � e

�k/b)k is min-
imized when k = ln2 · b, false positive rate can be simply
represented as 0.6185b. Thus, the value of b directly deter-
mines the memory usage of a Bloom filter. We can reduce
the false positive rate by allocating more bits-per-key for
Bloom filters, but allocating more bits to each keys will in-
crease the volume of all Bloom filters and thus consumes
more memory. Even worse, if the volume of all Bloom fil-
ters exceeds the memory capacity, some Bloom filters will be
swapped out to secondary storage, and this will induce extra
I/Os and further aggravate read amplification.

2.2 Motivation
Uneven accesses are still very common in KV stores [9, 22],
where only a small proportion of the KV pairs are frequently
accessed, while the majority of the KV pairs are seldom
accessed. Therefore, if we allocate more bits to the Bloom
filters for hot KV pairs and fewer bits for cold ones, then the
overall positive false rate during the whole execution process
of applications will be reduced. Clearly, we will face to a
series of challenges to realize such heterogeneous Bloom
filters and enable dynamic adjustment. In this subsection, we
present our observations on the access skewness of KV stores
to motivate this work. The detailed design of ElasticBF will
be presented in §3.

We run experiments with RocksDB to validate the access
unevenness in KV stores. We use YCSB [9] to load a 256GB

/�

1x107

1x106

100000
10000
 1000
 100
 10

Ac
ce

ss
 F

r e
q u

en
cie

s

uniform

1x107

1x106

100000
10000
 1000
 100
 10

 1 10 1000 100
SSTable ID

zipf 1.2
/� /� /� /�

Figure 2: File access frequencies under different workloads.

database in the experiments, where the size of each SSTable is
set as 64MB, which is the default configuration, and the size
of each key value pair is 1KB. Note that the maximum size of
L1 is configured as 256MB in RocksDB, and the size of Li is
10 times of that in Li�1 (i � 2), therefore 5 levels are enough
to keep 256GB data. We then generate two representative
workloads with uniform and Zipfian distributions, and each
workload contains ten million Get requests. Note that there
are about 4400 SSTables in the tested KV store, so issuing
ten million Get requests is enough to study the access pattern.
To make the evaluation of the hotness of SSTables and the
hotness of different regions in the same SSTable accurate, we
disable the Bloom filters in these experiments. That is, we
search the keys level by level, and at each level, we compare
the target key with the key ranges of SSTables. If the key falls
into the range of an SSTable, we will read the data out and
check whether the key exists or not until the key is found or
all levels are checked.

We first show the file-level access characteristics, and Fig-
ure 2 shows the access frequency of each SSTable. The x-axis
represents the identities of SSTables which are numbered se-
quentially from the lowest level to the highest level, and the
y-axis shows the number of accesses to each SSTable. From
the results, we can have two observations. First, on average,
the access frequencies of SSTables in lower levels are higher
than those in higher levels. This is because lookup always
flows from lower levels to higher levels. Second, if we zoom
in one particular level, we can find that the access frequencies
vary very significantly from SSTables, i.e., some SSTables
are much hotter than others within each level. Besides, when
we compare the access frequencies of SSTables in adjacent
two levels, we can find that it is very common to have some
SSTables in level Li+1 which are even hotter than some SSTa-
bles in level Li, especially for the skewed workload with Zipf
distribution. That is, SSTables in higher levels may also be
hotter than those in lower levels. For example, 21% of SSTa-
bles in L4 is even hotter than 11% of SSTables in L3. More
importantly, since more than 98% SSTables are stored in
the highest two levels, i.e., L3 and L4 in this example, we
can conclude that the hotness of most SSTables can not be

Hot SSTables
More bits/key

Lower FPR

Cold SSTables
Fewer bits/key

Limited mem. usage

ElasticBF: Elastic Bloom filter management with locality awareness

ElasticBF Design

ØChallenge 1: fixed data organization in SSTables limits BF adjustment

7

Data block1

Data block2

Data block3

Bloom filter

Index block

Footer

Bloom filters
in SSTables

are immutable

Fine-grained pre-allocation

Rationale: Separability (Multiple filters have the same FPR as a single filter
with the same bits-per-key, i.e., ∏)*+

, 0.6185-. = 0.6185- (∑)*+, 𝑏) = 𝑏))

ElasticBF Design

ØChallenge 2: How to determine the most appropriate number of
filter units for each SSTable and how to realize dynamical adjustment?

8

Determine: Cost-benefit analysis
Adjust Bloom filters only when the expected number of I/Os

caused by false positive 𝐸[𝐸𝑥𝑡𝑟𝑎_𝐼𝑂] can be reduced

• 𝑀: # of segments in the system
• f): access frequency of segment 𝑖
• 𝑟): false positive rate of the BF allocated for seg. 𝑖

𝐸[𝐸𝑥𝑡𝑟𝑎_𝐼𝑂] =?
@*+

A

𝑓) ∗ 𝑟)

ElasticBF Design

ØChallenge 2: How to determine the most appropriate number of
filter units for each SSTable and how to realize dynamical adjustment?

9

Adjust: in-memory multi-queue
Multiple LRU queues to realize dynamical adjustment

• Upgrade: each time when a segment is
accessed, move to the MRU side

• Downgrade: search an “expired”
segments from 𝑄_𝑛 to 𝑄_1 and move it to
the next lower-level queue if 𝐸[𝐸𝑥𝑡𝑟𝑎_𝐼𝑂]
can be reduced by releasing one filter unit

ElasticBF Design

ØChallenge 3: Writes in mixed workloads may reset the hotness
information (as compaction creates new SSTables)

10

Hotness inheritance
Estimate the hotness of new segments after compaction

① Find out involved old segments

② Estimate using the mean of the
hotness of old segments

③ Enable an appropriate number of filter
units based on the estimated hotness

Performance Evaluation

ØWe implement ElasticBF in various KV stores: LevelDB/RocksDB/PebblesDB
ØExperiment setting

� Machine

� Micro-benchmarks: workloads generated by YCSB-C

� YCSB benchmarks (six core workloads)
11

CPU Mem/Disk OS

Dell PowerEdge R730
12-cores Intel Xeon CPU E5-

2650 v4 with 2.20GHz

64GB RAM
500GB SSD and 1TB

7200RPM HDD

Ubuntu 16.04 OS with
Linux 4.15 kernel

Size of
KV pair

Size of
database

Request
Distribution

Zipfian
skew

Zero lookup/
Non-zero lookup

of
Get Req

1KB 100/400 GB zipfian/uniform 0.99/1.1/1.2 1:1 10 million

Micro-benchmarks

ØHow much improvement does ElasticBF achieve?
� Compare read performance w/ and w/o ElasticBF (10M GET requests)

12

ElasticBF increases the read throughput to >2x and reduces the
latency by >50%, and also reduces the # of I/Os by ~60%

Micro-benchmarks

ØMixed workload
� Still remarkable improvement

ØPUT and SCAN performance
� Negligible impact

13

YCSB Benchmarks

ØYCSB benchmarks

14

ElasticBF improves read throughput under read-dominant
workloads (B: 95% read, C: 100% read, D: 95% read)

Comparison with Monkey

ØMonkey: coarse-grained scheme (even BF allocation in each level)
w/o dynamical adjustment

15

Micro-benchmark: 10M GET to 100GB KV store

ElasticBF further increases the throughput to 1.39× – 2.20×

Comparison with Monkey

ØMonkey: coarse-grained scheme (even BF allocation in each level)
w/o dynamical adjustment

16

YCSB benchmark: 10M GET to 100GB KV store

ElasticBF further increases the throughput up to ~2× under
read-dominant workloads with high skewness

Impact of System Configurations

ØImpact of
� Hard disk
� Zero lookup ratio
� Block cache size
� KV pair size
� Database size
� Segment size
� Filter unit size

ØPlease refer to our paper for detailed results

17

Conclusion

ØLSM-tree based KV stores suffer from read amplification problem
� Bloom filters reduce extra I/Os and improve read performance
� Uniform Bloom filter design either suffers from high false positive rate or

incurs large memory overhead

ØWe develop ElasticBF
� An elastic scheme to dynamically adjust Bloom filters, so it improves read

performance with limited memory
� Orthogonal to the optimizations of the LSM-tree structure, so it can be

deployed in various existing KV stores

18

Thanks for your attention!

For any questions, please feel free to contact
Prof. Yongkun Li@USTC

ykli@ustc.edu.cn
http://staff.ustc.edu.cn/~ykli/

19

mailto:ykli@ustc.edu.cn

