ElasticBF: Elastic Bloom Filter with
Hotness Awareness for Boosting Read
Performance in Large Key-Value Stores

Yongkun Li, Chengjin Tian, Fan Guo, Cheng Li, Yinlong Xu

University of Science and Technology of China
USENIX ATC 2019

Background

» Key-value (KV) store has become an important storage engine for
many applications
* Cloud storage
* Social networks
* NewSQL database

»Examples of KV stores
* Hbase @ Apache

* LevelDB @ Google ;
* RocksDB @ Facebook /‘ ROCkSDB

LSM-tree-based KV Stores

»The most common design of KV stores is based on LSM-tree (log
structured merge tree)

Level 0 b Compaction with merge sort

Level 1 /T Data blocki Design Highlights
/| Data block2 Layering
/ Data block3 Log-structured writes

tevelz LU " L2 /! : Sorted in each level

. vee '// Bloom filter

° / Index block
Level 6 coe I Footer

N? Semm? Swwmmm? 0 S v -

SSTable

LSM-tree-based KV Stores

»The most common design of KV stores is based on LSM-tree (log

structured merge tree) Racd Aot

Level 0 search order Key lookup: Check
SSTables from lower levels
Level 1 /TDatablock1] | to higher levels, one from
U
| Data block2 each level (sorted)
/' Data block3
Level 2 s / :
* /,/ |7E"‘7‘ffwziw\ﬁﬁ‘ ‘f‘i\r“ﬁ@\'f Bloom Fllters
e [N N V4 e .
‘ Y Index block | - improve read performance
Level 6 I ____________ Footer (also cached in memory)

SSTable

Limitation of Bloom Filters

»Bloom filters suffer from false positive rate
+ False positive rate (FPR): 0.6185P (b: Bits-per-key)

Bits-per-key 2bits 3bits 4bits 5bits 6bits

FPR 38.3% 23.7% 14.6% 9.1% 5.6%

- How to reduce false positive rate?

* Allocate more bits for each key
* Incur large memory overhead (as Bloom filters are cached in memory)

Question: how to improve the Bloom filter design with limited memory cost?

Main Idea

»Observation: unevenness of access frequencies
 Vary from different levels, SSTables, or even different regions within an SSTable

o] o Hot SSTables
o More bits/key
5 o Lower FPR
g "olul o [1 [u]
2 1286 zipf 1.2 ——
S 100000} Cold SSTables
< 10000%— .

oo} - Fewer bits/key

v 10 100 1000 Limited mem. usage
SSTable ID

ElasticBF: Elastic Bloom filter management with locality awareness

6

ElasticBF Design

» Challenge 1: fixed data organization in SSTables limits BF adjustment

Data block Fine-grained pre-allocation
Data block?2
) Segment 1
Bloom filters Data block3 Segment 2
_ Data blocks
in SSTables Segmantm | - [ERer unit |
are immutable Filter group 1 Filter unit 2
Bloom filters - |t€r group 2 “~~__[Filter unit n
Index block Filter group m
Index Block
Footer Footer

Rationale: Separability (Multiple filters have the same FPR as a single filter
with the same bits-per-key, i.e., [[*., 0.6185% = 0.6185" (X, b; = b))

ElasticBF Design

» Challenge 2: How to determine the most appropriate number of
filter units for each SSTable and how to realize dynamical adjustment?

Determine: Cost-benefit analysis

Adjust Bloom filters only when the expected number of I/Os
caused by false positive E[Extra_IO] can be reduced

* M: # of segments in the system

E|Extra_IO] =

fi * 13 * f;:access frequency of segment i

R

* 1;: false positive rate of the BF allocated for seg. i

ElasticBF Design

» Challenge 2: How to determine the most appropriate number of
filter units for each SSTable and how to realize dynamical adjustment?

Adjust: in-memory multi-queue
Multiple LRU queues to realize dynamical adjustment

Segment 1 LRU MRU
Segment 2 RTOEre gRTeLre e . . . - .
J A0 RD-I=0-0 - - S0-0:n * Upgrade: each time when a segment is
Segr;;ﬁt m Zvrveoe?wgléfed : accessed, move to the MRU side
Filter group 1 [~~~ i KM R S0 - ~ -0 HD:2

Filter group 2 'I']" '|]" 'D" ‘D“ ”D" ‘D"_ .. 4f=fdpi1 ° Downgrade: search an “expired”

"""""""""""" segments from Q_nto Q_1 and move it to

Filter group m T T E IR I S S _
|nde?< B|O|zk Snt Wi Wi i S a U s phle Wi Wi W IR the next lower-level queue if E[Extra_IO]
Footer Multi-Queue [~ Segment 1 . can be reduced by releasing one filter unit
in th [|Filter unit
SSTable on the disk Inthe memory |*“metadata

ElasticBF Design

» Challenge 3: Writes in mixed workloads may reset the hotness
information (as compaction creates new SSTables)

Hotness inheritance

Estimate the hotness of new segments after compaction

SSTable 1 SSTable 2

1

f2

Merge data

SsTablen (1) Find out involved old segments
fn

(2) Estimate using the mean of the
hotness of old segments

(f+ f2+...+f)/n (3 Enable an appropriate number of filter
units based on the estimated hotness

Generated SSTable

Performance Evaluation

»We implement ElasticBF in various KV stores: LevelDB/RocksDB/PebblesDB
» Experiment setting

* Machin
achine CPU Mem/Disk 0OS
Dell PowerEdge R730 64GB RAM .
12-cores Intel Xeon CPU E5- 500GB SSD and 178 Ubuntu 16.04 OS with

2650 v4 with 2.20GHz 7200RPM HDD Linux 4.15 kernel

* Micro-benchmarks: workloads generated by YCSB-C

Size of Size of Request Zipfian Zero lookup/ # of
KV pair database Distribution skew Non-zero lookup Get Req
1KB 100/400 GB zipfian/uniform 0.99/1.1/1.2 1:1 10 million

* YCSB benchmarks (six core workloads)

KOPS

Micro-benchmarks

»How much improvement does ElasticBF achieve?
* Compare read performance w/ and w/o ElasticBF (10M GET requests)

: ‘ : 525 : : :
107 Dw/o ElasticBF Mlwith ElastchF\ 400} w/o ElasticBF IMwith ElasticBF | p 20 \[CIw/o ElasticBF Illwith ElasticBF|
3300} _ - - @ o
> — Q15 =]
5t g 200+] E’ 0! _
5 100] | 2 5 |
: : | B
LeveIDB RocksDB PebblesDB LevelDB RocksDB PebblesDB < LevelDB RocksDB PebblesDB
(a) Throughput (b) Latency (c) Total number of I/Os

ElasticBF increases the read throughput to >2x and reduces the
latency by >50%, and also reduces the # of |/Os by ~60%

12

)

—

y (us

Read Latenc

|w/o ElasticBF llwith ElasticBF|
1000 —

"l b

LevelDB RocksDB PebblesDB

(a) Read latency (50% reads)

’(;i\ T T T

§ 15 _|I:iv!o ElasticBF lllwith ElasticBF| |
x

o 107

=

E 5] -
o

g LI | N B
- LevelDB RocksDB PebblesDB

(a) Time to load the KV store

Micro-benchmarks

—
o

w

 |Ew/o ElasticBF Illwith ElasticBF] |

Hl m lm

Number of 1/0Os (x1M)
o

D 0.3¢

0.1

(b) Throughput of range query

O L
LevelDB RocksDB PebblesDB
(b) Number of I/Os (50% reads)

|Ew/o ElasticBF Illwith ElasticBF|

|

0
LevelDB RocksDB PebblesDB

» Mixed workload

- Still remarkable improvement

»PUT and SCAN performance
* Negligible impact

13

KOPS

»YCSB benchmarks

40

20 |

0

\EW/O IElasticlBF-‘;vith EllasticBII:\

I Hl HI ﬂl . m
A B C D E F

(a) LevelDB

YCSB Benchmarks

[Iw/o ElasticBF Bwith ElastchF\

Iﬂl

) RocksDB

KOPS

40

Dw/o ElasticBF Bwith ElastchF\

Ilﬂlﬂl
(¢)

c) PebblesDB

ElasticBF improves read throughput under read-dominant
workloads (B: 95% read, C: 100% read, D: 95% read)

14

Comparison with Monkey

»Monkey: coarse-grained scheme (even BF allocation in each level)

w/o dynamical adjustment
30

I~

\ IZIMonkey-ElasticBF\l

I||:|Monkey-EIasticBF\l

ol Hl

zipf 0.99 zipf 1.10 zipf 1.20
(a) Thpt. under 100GB database (b) Total number of I/0s
[Micro-benchmark: 10M GET to 100GB KV store]

(48]

1 e

zipf 0.99 zipf 1.10 zipf 1.20

—
T

o

Number of I/Os (x1M]
(R

ElasticBF further increases the throughput to 1.39X —2.20X

15

Comparison with Monkey

»Monkey: coarse-grained scheme (even BF allocation in each level)
w/o dynamical adjustment

| |E|Monkéy-élasticEF| | 100 |D|Munk;ay-llilasticlBF|]
o 40f - | n _
o] B o 50
20} | 2) |
o LTI IR NIl |
A B C D E F A B C D E F
(a) Throughput with Zipf 0.99 (b) Throughput with Zipf 1.2

| YCSB benchmark: 10M GET to 100GB KV store |

ElasticBF further increases the throughput up to ~2X under
read-dominant workloads with high skewness

16

Impact of System Configurations

» mpact of

200 | [2w/o ElasticBF llwith ElasticBF| 15| [C0w/o ElasticBF lMlwith ElasticBF| 15 |EBw/o ElasticBF Elwith ElasticBF| 10 |EBw/o ElasticBF Ellwith ElasticBF|
. d disk
Hara dis 150 24 0
O 100 g g 5
1 5
+ Zero lookup ratio = [I}l | ﬂ H ﬂ I
. LevelDB RocksDB PebblesDB 0 0% 25% 50% 75% 100% 0 oM 4MB 16MB 64MB 0 1K 512B 256B 1288
°
B I OC k Ca C h e S I Ze (a) Performance under HDD (b) Impact of zero lookup ratio (¢) Impact of block cache size (d) Impact of KV pair size
o KV p a i rs | e 10/ [@wio ElasticBr Mlwith ElasticBF] 10 [EJwio ElasticBr Mlwith ElasticBF] 10 [EJwio ElasticBr Mlwith ElasicBF] 10 ([EJwio ElasticBr Mlwith ElasticBF]
%) 7] 7] 7]
. b i S s e e 5
Database size 9 ¥ 9 0 g
° Segment SIZe 100GB 200GB SOdGB 400GB OESBKB iMB 4MB 16MB 64MB 0 10K 20K 30K 40K 50K 0 2bit 3bit 4bit 5bit 6bit
. . . (e) Impact of database size (f) Impact of segment size (g) Impact of 1ifeTime (h) Impact of filter unit size
* Filter unit size

» Please refer to our paper for detailed results

17

Conclusion

»LSM-tree based KV stores suffer from read amplification problem
* Bloom filters reduce extra I/Os and improve read performance

* Uniform Bloom filter design either suffers from high false positive rate or
incurs large memory overhead

»We develop ElasticBF

* An elastic scheme to dynamically adjust Bloom filters, so it improves read
performance with limited memory

* Orthogonal to the optimizations of the LSM-tree structure, so it can be
deployed in various existing KV stores

Thanks for your attention!

For any questions, please feel free to contact
Prof. Yongkun Li@USTC

http://staff.ustc.edu.cn/~ykli/

mailto:ykli@ustc.edu.cn

