
PARTISAN
SCALING THE

DISTRIBUTED ACTOR
RUNTIME

Christopher S. Meiklejohn

Heather C. Miller

Peter Alvaro



MOTIVATION

Distributed systems programming is still very hard:
 How to manage state?

 How do we manage concurrency?

 How do we leverage parallelism?

Distributed actors are good! (and, a good match to distributed systems, too!)
 Encapsulation for state

 Pervasive concurrency – thousands of actors working together

 Asynchronous messaging – no shared memory between actors

 Transparent messaging and serialization – easy programming model!

Demonstrated success:
 Erlang: Call of Duty, League of Legends, WhatsApp

 Orleans: Halo, Gears of War



DISTRIBUTED ACTORS: TODAY’S DRAWBACKS

Scalability

 All-to-all communication is expensive and prohibitive

 Nodes need to know about all other nodes

Latency

 Multiplexed TCP connection is a bottleneck

 Many actors reduced to a single connection’s speed

 Congestion: 

 network latency, queueing delay

 Contention: 

 competing for shared resources, slow-sender vs. fast-sender



PARTISAN

Design of an alternative runtime system for distributed actor systems
 Design and prototype implementation in Erlang

Runtime selection of communications overlay network
 Specialize overlay selection to communications pattern of application

 No modification to application code

Provides reduced latency and increased scalability
 Enable parallelism on the network

 Schedule messages efficiently on the network

Results:
 Order of magnitude increase in cluster size

 Up to 13.5x reduction in latency and 38.07x increase in throughput

Come to our talk!

11:20 AM, Track 2: Runtimes

July 10th


