Mitigating Asymmetric Read and Write Costs in
Cuckoo Hashing for Storage Systems

Yuanyuan Sun, Yu Hua, Zhangyu Chen, Yuncheng Guo
Huazhong University of Science and Technology

USENIX ATC 2019

Query Services in Cloud Storage Systems

» Large amounts of data
e 300 new profiles and more than 208 thousand photos per minute [September

2018@Facebook]

C—
CH—
—L

[

Query Services in Cloud Storage Systems

» Large amounts of data
e 300 new profiles and more than 208 thousand photos per minute [September

2018@Facebook]
E)
O
I

Demanding the support of low-latency and high-throughput queries

0 00 - g |

v’ Constant-scale read performance
e Widely used in key-value stores and relational databases

& redis

monetdb, z;-l HyPer

v’ Constant-scale read performance
e Widely used in key-value stores and relational databases

& redis

monetdb, 42-& HyPer

x High latency for handling hash collisions

Cuckoo Hashing

» Multi-choice hashing
» Handling hash collisions: kick-out operations

[n] [k

/

d

A

[m]

T1

| ||
12 | ||

[b]

Cuckoo Hashing

» Multi-choice hashing
» Handling hash collisions: kick-out operations

Insert(x)

Cuckoo Hashing

» Multi-choice hashing
» Handling hash collisions: kick-out operations

Cuckoo Hashing

» Multi-choice hashing
» Handling hash collisions: kick-out operations
» For lookups, only limited positions are probed => O(1) time complexityf\%f}

Cuckoo Hashing

» Multi-choice hashing

» Handling hash collisions: kick-out operations ey
. [Aaa)

» For lookups, only limited positions are probed => O(1) time complexity &=

Cuckoo Hashing

» Multi-choice hashing

» Handling hash collisions: kick-out operations o
» For lookups, only limited positions are probed => O(1) time complexity &=
» For insertions, endless loops may occur! => slow-write performance t, :

Ti[f] fa] [n] k|

/\

12| |m] Jcf [b]

Cuckoo Hashing

» Multi-choice hashing

» Handling hash collisions: kick-out operations ey
» For lookups, only limited positions are probed => O(1) time complexity &=
» For insertions, endless loops may occur! => slow-write performance ; ;

Insert(x)

Cuckoo Hashing

» Multi-choice hashing

» Handling hash collisions: kick-out operations ey
. [AaA)

» For lookups, only limited positions are probed => O(1) time complexity &=

» For insertions, endless loops may occur! => slow-write performance f, ;

Insert(x)

Cuckoo Hashing

» Multi-choice hashing

» Handling hash collisions: kick-out operations ey
. [AaA)

» For lookups, only limited positions are probed => O(1) time complexity &=

» For insertions, endless loops may occur! => slow-write performance f, ;

Insert(x)

An endless loop occurs! s

Cuckoo Hashing

» Multi-choice hashing

» Handling hash collisions: kick-out operations —~
» For lookups, only limited positions are probed => O(1) time complemty’jﬂw
» For insertions, endless loops may occur! => slow-write performance ~ 5

Insert(x)

o [(] To] (] [x]] A

Bottleneck: Asymmetric reads and writes!

a_ X/

S \14 / | \I

12 ((m)) [cf [b] | | m
— An endless loop occurs! s

Concurrency in Multi-core Systems

» Existing concurrency strategy for cuckoo hashing

e locking two buckets before each kick-out operation
(libcuckoo@EuroSys’14)

Concurrency in Multi-core Systems

» Existing concurrency strategy for cuckoo hashing

e locking two buckets before each kick-out operation
(libcuckoo@EuroSys’14)

» Challenges:
e Poor insertion performance
e Poor scalability

Concurrency in Multi-core Systems

» Existing concurrency strategy for cuckoo hashing

e locking two buckets before each kick-out operation
(libcuckoo@EuroSys’14)

» Challenges:
e Poor insertion performance
e Poor scalability

» Design goal:
e A high-throughput and concurrency-friendly cuckoo hash table

Our Approach: CoCuckoo

» Pseudoforests to predetermine endless loops
» Efficient concurrency strategy
e A graph-grained locking mechanism

* Concurrency optimization to reduce the length of critical path

» Higher throughput than state-of-the-art scheme, i.e., libcuckoo

Mitigating Asymmetric Read and Write Costs
in Cuckoo Hashing for Storage Systems

Parallelism & Synchronization, Technical Sessions Track 2
10:25 am - 10:45 am, Thursday, July 11

USENIX ATC 2019

	Slide Number 1
	Query Services in Cloud Storage Systems
	Query Services in Cloud Storage Systems
	Hash structures
	Hash structures
	Cuckoo Hashing
	Cuckoo Hashing
	Cuckoo Hashing
	Cuckoo Hashing
	Cuckoo Hashing
	Cuckoo Hashing
	Cuckoo Hashing
	Cuckoo Hashing
	Cuckoo Hashing
	Cuckoo Hashing
	Concurrency in Multi-core Systems
	Concurrency in Multi-core Systems
	Concurrency in Multi-core Systems
	Our Approach: CoCuckoo
	Slide Number 20

