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Query Services in Cloud Storage Systems

» Large amounts of data
e 300 new profiles and more than 208 thousand photos per minute [September
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Demanding the support of low-latency and high-throughput queries
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x High latency for handling hash collisions



Cuckoo Hashing

» Multi-choice hashing
» Handling hash collisions: kick-out operations
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» Multi-choice hashing

» Handling hash collisions: kick-out operations —~
» For lookups, only limited positions are probed => O(1) time complemty’jﬂw
» For insertions, endless loops may occur! => slow-write performance ~ 5

Insert(x)
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Bottleneck: Asymmetric reads and writes!
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» Existing concurrency strategy for cuckoo hashing

e locking two buckets before each kick-out operation
(libcuckoo@EuroSys’14)

» Challenges:
e Poor insertion performance
e Poor scalability

» Design goal:
e A high-throughput and concurrency-friendly cuckoo hash table



Our Approach: CoCuckoo

» Pseudoforests to predetermine endless loops
» Efficient concurrency strategy
e A graph-grained locking mechanism

* Concurrency optimization to reduce the length of critical path

» Higher throughput than state-of-the-art scheme, i.e., libcuckoo
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