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Background: Data Movement Bottleneck

»“Moore’s Law” of storage drive: bandwidth doubles every two years.
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Existing Work

»In-storage computing (ISC).

Example: [ Host“i\j
SELECT AVG(depdelay), origin

__FROM flight_delays less
___ WHERE distance > 2000 _: cmd Bwel] data
GROUP BY origin " Drive N\
ORDER BY flight_id; v .

Storage
{Controller'( >| Chips ]
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Limitations of Existing Work

Analyzing existing work by examining every layer of the system stack.
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INSIDER’s Approach

ited performance or flexibility. e HW: FPGA-based.

* ARM-based -1 computing speed.  12x nerf, 31X cost efficiency.
* ASIC-based --- limited to specific appPs

* Runtime: Lack of crucial supports. * Runtime:
tection: A separate control plane that
Drive prog:. sunwarranted data.  enforces permission check and

* Virtualization: resource scheduling.
Support simultaneous multiple drive progs.

mming: Lack of a simple abstraction. » Programming:
* Not integratecm existing system interface. A File-based abstraction
»Requires considerable code mo for in-storage computing.
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The Initial System Architecture

* Lacks of protection.
 Drive program can issue arbitrary storage 1/0 requests.
»Need a control plane to enforce system policies.

-

: Drive Storage Unit
A
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I Firmware
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Separate Control Plane and Data Plane

* Make drive program “compute-only”.
»The control plane is responsible for issuing storage 1/0 requests.
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Separate Control Plane and Data Plane

»Host file system performs permission check on requested input files.
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Separate Control Plane and Data Plane

* Host file system performs permission check on requested input files.
»Corresponding LBAs are sent to drive firmware to issue storage |/Os.
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Separate Control Plane and Data Plane

* Host file system performs permission check on requested input files.
* Corresponding LBAs are sent to drive firmware to issue storage 1/0Os.
» Enforced by our trusted runtime component.

. ™
Host | Drive ,
File Svstem Storage Unit
ile Syste -
(2.1) Files|Paths | (2.2) LBAs Controller (3) PBAs

DMA

(4) Data
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A
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Extend the Control Plane to Support Virtualization
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Extend the Control Plane to Support Virtualization

» Leverage partial reconfiguration to enable a “multi-core” FPGA.
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Extend the Control Plane to Support Virtualization

* Leverage partial reconfiguration to enable a “multi-core” FPGA.
»Host runtime enforces drive task scheduling centrally.
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Extend the Control Plane to Support Virtualization

»Requires drive bandwidth scheduling among drive processes.
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Extend the Control Plane to Support Virtualization

* Requires drive bandwidth scheduling among drive processes.
» Adaptive and fair.
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Extend the Control Plane to Support Virtualization

* Requires drive bandwidth scheduling among drive processes.

* Adaptive and fair.
»Cannot do at host-side INSIDER runtime --- too slow, PCle RTT is 1 ps.

o )
Host Drive .
. Storage Unit
File System -
Controller (3) PBAs
> Firmware
DMA
| I d-—n
{HOSt Progl (5) Result | Core |Core Core | (4) Data
i o |1 ]2
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Extend the Control Plane to Support Virtualization

» Partially offload control plane into the FPGA hardware.

(L )
Host | Drive ,
Eile Svstem | Storage Unit
ile Syste -
(2.1) Files|Paths | (2.2) LBAs : Controller (3) PBAs
| > Firmware (4)|Dafa

L _(1) sched DMA
----- T I il O v
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Extend the Control Plane to Support Virtualization

* Partially offload control plane into the FPGA hardware.
» Monitors the drive bw consumption by using the dispatching knowledge.

N )
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Extend the Control Plane to Support Virtualization

* Partially offload control plane into the FPGA hardware.
* Monitors the drive bw consumption by using the dispatching knowledge.
» Provides feedback to firmware to adjust the req rate.
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Extend the Control Plane to Support Virtualization

* Partially offload control plane into the FPGA hardware.
* Monitors the drive bw consumption by using the dispatching knowledge.
* Provides feedback to firmware to adjust the req rate.

» Design a policy similar with deficit round-robin for fairness.
o )

Host
. Drive Storage Unit
File System yY
Controller (3) PBAs
> Firmware (4)|Datja
DMA
M 1-—
{Host Progl (5) Result | Core|Core
1 O 1
| ———_ Y
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Programming Model --- Virtual File

Abstract as in-storage computing as file operations.
* virt_file = drive_program(real_file)

Host-side POSIX-like APIs:

* int vopen(const char *path, int flags)

* ssize _tvread(int fd, void *buf, size t count)

* ssize t vwrite(int fd, void *buf, size t count)

* int vsync(int fd)

* int vclose(int fd)

 string reg_virt_file(string file_path, string acc_id)
Example: feature selection in ML training.

e post_file =reg virt file(pre_file, acc_feature_selection)
»SVM(post_file)
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Experiment Setup

Build an in-storage computing drive using a PCle-based FPGA board.

Capacity 64 GB

Latency 5 US
Sequential R/W 16 GB/s
Host/Drive Bus PCle Gen3 x8 and x16

Host File System XFS



Applications and Their Development Efforts

Application Devel.Time _
ool on T orve

Grep 3
KNN 2 77 72
Statistics 3 65 170
SQL Query 5 97 256
Data Integration 5 41 307
Feature Selection 9 50 632
Bitmap file decompression 5 94 213



Applications and Their Development Efforts

Description Name LOC Devel. Time
(C) | (Person-months)

Simple IO operations Base-I0 1500 1
Virtualized SSD interface with OS bypass and permission check- | Direct-I0 1524 1.2
ing

tomic writes tailored for scalable database systems Atomic-Write
Direct-access caching device with hardware support for dirty data | Caching 728 1
tracking
SSD acceleration for MemcacheDB Key-Value 834 1
Offload file appends to the SSD Append 1588 1

Taken from Willow [OSDI’14].




INSIDER vs ARM-ISC
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Throughput (INSIDER vs ARM-ISC)
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Cost Efficiency (INSIDER vs ARM-ISC)

» Cost efficiency = throughput / dollars

»Use the wholesale price in the evaluation.
e Xilinx Artix-7 XC7A200T: S37.

(https://www.alibaba.com/product-detail/XC7A200T-1FFG1156C-IC-Embedded-
FPGA-Field 60730073325.html)

* ARM Cortex A72 (4 cores, 1.8 GHz): S95.

(https://www.mouser.com/ProductDetail/NXP-
Freescale/LS1046ASN8T1A?qs=sGAEpiMZZMup8ZLti7BNCxtNz7%252BF43hzZlk
vLag0J8c%3D)



https://www.alibaba.com/product-detail/XC7A200T-1FFG1156C-IC-Embedded-FPGA-Field_60730073325.html
https://www.mouser.com/ProductDetail/NXP-Freescale/LS1046ASN8T1A?qs=sGAEpiMZZMup8ZLti7BNCxtNz7%252BF43hzZlkvLaqOJ8c%3D

Cost Efficiency (INSIDER vs ARM-ISC)

Cost efficiency (MiB/S)
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More Details

* INSIDER vs original host-only architecture.

» Analysis of FPGA resource utilization.

[ Host ]
| o O [ = R
Tasks Reduced Data
2 z
Storage
INSIDER

Storage Chips

Host-Only

LUT FF BRAM | DSP
Grep 34416 24108 1 0
KNN 9534 11975 0.5 0
Statistics 14698 15966 0 0
SQL query 9684 14044 1 0
Integration 40112 6497 14 0
Feature selection 41322 44981 24 48
Bitmap decompression 60837 13676 0 0
INSIDER framework 68981 120451 309 0
DRAM and DMA IP cores | 210819 245067 3455 12
XCVU9P [19] 1181768 | 2363536 | 2160 6840
XCTA200T [2] 215360 269200 365 740




More Details

* INSIDER vs original host-only architecture.
* Analysis of FPGA resource utilization.
» Evaluation of INSIDER’s drive bandwidth scheduler.

LUT FF BRAM | DSP
Grep 34416 34108 1 0
[ Host ] [ Host ] KNN 9534 975 | 05 0
Statistics 14698 15966 0 0
[ 27 of [} - PCle = = = « - = == o o SQL query 9684 14044 1 0
Tasks Reduced Data Original Data Integration 40112 6497 14 0
Feature selection 41322 44981 24 48
A 4 \Z L Bitmap decompression 60837 13676 0 0
- p decomp
FPGA <:> orage Storage Chips INSIDER framework 63981 120451 | 300 0
Chips DRAM and DMA 1P cores | 2108190 | 245067 | 3455 2
XCVU9P [19] 181768 | 2363536 | 2160 6340
INSIDER Host-Only XCTA200T [2] 215360 | 269200 | 365 740
16 —— : : : :
w14 — statistcs oo SQL =+ = pass-through |
Poa)
Q
£ - .
£ — e :
S gL e L | o000
o] .
c - \
3] . .
m i \
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Conclusion

“Data movement wall” prevents end users from utilizing the advance
in storage technology.

We present INSIDER, a full-stack redesigned storage system.
* High end-to-end performance and cost efficiency.
* A simple but effective file abstractions for in-storage computing.
»Enables protection and virtualization for a shared environment.



