Accurate Characterization of the Variability in Power Consumption in Modern Mobile Processors

Bharathan Balaji

John McCullough, Rajesh Gupta, Yuvraj Agarwal

Computer Science and Engineering, UC San Diego

Variability Primer

Lot-to-Lot

Intradie

Variability Primer

Across wafer frequency variation

- Conservative guard bands
 - Consistent performance
 - Hardware is under-utilized
- Variability Mitigation
 - Adaptive Body Biasing
 - Error Correction
 - Aggressive binning

Variability Expected to Increase

Measured Variability

ARM Cortex M3 Sleep Current (Room Temperature)

Incremental Memory Power in 2GB DIMMs

5

P2

P4

P5 P6

P7

P8

P9

Why Processor Level Characterization?

Motivation

- Variability in real world applications
- Impact of variability mitigation techniques
- Effectiveness of binning strategy
- Challenges
 - Complex architecture
 - Power saving strategies like C-States
 - DVFS strategies like Turbo Boost
- No public data available to study system-level variation

Outline

- Motivation
- Measurement Setup
- Results
- Implications & Future Work

Mobile Processor Characterization

- 6 x Core i5-540M processors
 - Nehalem class, Dual Core
 - 32nm processor
 - 35W thermal design power
 - Frequency: 1.20 GHz 2.53 GHz
 - Turbo Boost 1.0 (3.06GHz)
 - C-States (sleep states) support up to C6
 - Hyper-Threading

Measurement Setup

Measurement Setup

- Calpella: only CPU core
- Linux kernel
- NI DAQ: 16 bit, 1ms
- BIOS options:
 - Turbo Boost, Hyper-Threading, C-States
- Test Harness
 - Frequency control: userspace cpu governors
 - Core affinity: Linux cpuset

Measurement Challenges

V

- Several factors can affect measurements:
 - Operating Systems, Thermal, Transient, ...
- To eliminate these causes:
 - Transients: Multiple iterations of each benchmark
 - OS effects: System Reboot for every set of runs
 - Thermal: Processors swapped in and out of socket
- All variations shown as standard deviation
- Verify results across identical platforms

Outline

- Motivation
- Measurement Setup
- Results
- Implications & Future Work

13

Results Outline

• Power Variation:

Max P_{avg} – Min P_{avg} Min P_{avg}

- SPEC:
 - Representative 19 out of 36 benchmarks
 - Config: P-States, Turbo Boost, C-States
- PARSEC:
 - 12 out of 13 benchmarks
 - Config: Hyper-Threading, Turbo Boost

Power Measurements

- Ordering of processors same for all benchmarks
- Power Variation of 12% 17% across benchmarks

Variation with P-States

- Variation increases with frequency
- E.g. sphinx3: 1.33GHz 5.9%, 2.53 GHz 16.4%
- Cause: Leakage power increases with P-State

Effect of Turbo Boost: On and Off

- Power and performance increase
- Turbo Boost On, C-State On: 7-12% variation
- Cause: Shut down of unused cores

Variation: Turbo Boost & C-States

Variation increases with Turbo Boost disabled

- Variation increases with C-states disabled
- Cause: Leakage current increase with C-state Off,

Mutli-threaded Benchmarks (Parsec)

- Variation decreases with Turbo Boost and HT
- Cause: Disabled HT circuits and drop in frequency

Outline

- Motivation
- Measurement Setup
- Results
- Implications & Future Work

Implications

- Leakage power is the dominant cause of variation
- Variability in processor, memory and SSD
 - Battery lifetime will vary between instances
 - Modeling of power is harder with variation*
- We observe low within-die variation

Future Work

- Investigate Causes
 - Model-specific registers (MSRs)
- Characterization of other class of processors
 - Architectures: Sandy Bridge, Ivy Bridge
 - Platforms: Servers, Cell Phones
- Models of system-level variability

Conclusion

- Power Variation: 7% to 17% (2.53Ghz)
- Variation increases with frequency
- Variation increases with Turbo Boost disabled
- Variation increases with C-States disabled
- Variation increases with HT disabled
- Leakage power causes variation

• Dataset released:

http://mesl.ucsd.edu/site/pubs/HotPower12_dataset.tgz

http://www.variability.org