
Parallel	
 Programming	
 in	
 the	
 Real	
 World!	

•  Andrew	
 Brownsword,	
 Intel	

•  Niall	
 Dalton	

•  Goetz	
 Graefe,	
 HP	
 Labs	

•  Russell	
 Williams,	
 Adobe	

•  Moderator:	
 Luis	
 Ceze,	
 UW-­‐CSE	

Andrew Brownsword

MIC SW Architect

Intel Corporation

“ ” software is…

 Large, unwieldy, and long lived

 Much longer & larger than intended

 especially by the authors!

 Written by many people

 Of widely ranged skills, styles, agendas, experiences

 Many have moved on to [next_task..next_life]

 Hard to change

 Even with language-aware tools

“ ” software is…

 Expressed in and defined by programming

models

 Many levels of abstraction, concreteness,

explicitness, constraints

○ Best balance depends on goals & changes over time

 Compilers only understand the programming

model…

 …not the abstractions built in it

“ ” parallel software is…

 Supposed to be fast

 But performance is extremely fragile

 Supposed to be robust

 Data races, deadlocks, livelocks, etc

 Composability

 Supposed to be maintainable

 Critical aspects often hidden in the details

1. Brief survey of the “ ” landscape

2. Implications for programming models

Games

Games – code & platform

 Medium-to-large codebases
 50K-5M lines of code, largely C++

 May have large tool chains & online infrastructure

 Many diverse sub-systems running at once
 “Soft” real-time, broad range of data set sizes

 Frame-oriented scheduling (mostly)

 Many sequencing dependencies between tasks

 Target hardware “is what it is”
 Phones to servers, performance is critical

 Multi-core, heterogeneous, SIMD, GPU, networks

Games – many systems

 Graphics

 Environment

 Audio

 Animation

 Game logic

 AI & scripting

 Physics

 User Interface

 Inputs

 Network

 I/O (streaming)

 Data conversion / processing

Note that this slide is a gross over-simplification!

Games – dev process

 Short development cycles
 Severe code churn, high pressure to deliver quickly

 Middleware & game “engine” use common

 Rapidly changing feature requirements
 Fast iteration during development is critical

 Code & architecture maintenance nightmare

 Substantial volume & variety of media data
 Content team size greatly exceeds engineering’s

 Porting between diverse platforms is common

HPC

HPC – code & platform

 Widely varying codebases & domains
 10K-10M+ lines of code

 Diverse programming models
○ Fortran, C/C++, MPI, OpenMP dominate

 Few kernels*, BIG data*
 Correctness & robustness are critical*

 Epic, titanic, gargantuan data sets*

 Varied target hardware
 Workstations to large clusters

 Often purchased for the application

* Usually

HPC – dev process

 On-going development cycles
 Code is generally never re-written, lasts for decades

 Huge, poorly understood legacy code

 Heavy library use (math, solvers, communications, etc.)

 Correctness, verifiability, robustness
 Dependability of results is crucial

 Very, very long running times are common

 Portability across generations & platforms
 Tuning ‘knobs’ exposed rather than changing the code

 Outlast HW, tools, vendors, prog. models, authors

Programming Models

Programming Models

 Design of the model has formative impact
on software written in it
 Abstractions to avoid over-specifying details

 Concrete to allow control over solution

 Explicit to keep critical detail visible

 Constraints to allow effective optimization

 For parallelism:
 Top desirable attributes

 Top factors to address

Desirable Attributes…

Integration

 With other models:
 Existing model, enables gradual adoption

 Peer models, there is no single silver bullet

 Layered models, enables DSLs & interop

 With runtimes:
 Interaction & interop within processes

 Resource management (processors, memory, I/O)

 With tools:
 Build systems, analysis tools, design tools

 Debuggers, profilers, etc.

Portability

 Hardware, OS & vendor independence

 Standard, portable models live longer

 Investment in software is very expensive
 Re-writing is often simply not an option

 Even seemingly small changes can be
extraordinarily expensive

○ Testing & validation costs

○ Architectural implications

Composability

 Real software is large and complex

 Built by many people

 Built out of components

 Subject to intricate system level behaviours

 Programming models must facilitate and

support these aspects

Factors To Address…

Concurrent Execution

 Multiple levels to achieve performance

 Vectorization (SIMD & throughput optimization)

 Parallelization (multi/many-core)

 Distributed (cluster-level)

 Internet (loosely coupled, client/server, cloud services)

 Programming model needs to express each level

 Each level brings >10x potential

 Cannot afford a different decomposition at each level

Data Organization & Access

 FLOPS are cheap, bandwidth is not
 Severe and worsening imbalance

 No sign of this changing

 Optimizing data access is usually key to
achieving performance & power

 Existing models do very little to address this
 Access patterns usually implicit, layouts explicit

 Changing data layout requires changing code

 Different hardware, algorithms & models demand
different layouts

Specialization

 Hardware is diversifying

 Heterogeneous processors (CPU, GPU, etc)

 Fixed function hardware

 System-on-chip

 Driven by power & performance

 Tight integration needed for fine-grained

interactions & data

NYSE	
 TAQ	
 record	
 counts	

An	
 elegant	
 weapon..	
 	

for	
 a	
 more	
 civilized	
 age	

Trade	
 lifecycle	

•  Strategy
Development &
Testing

•  Strategy
Deployment &
Management

• Data Storage &
Analysis

•  Post Trade
Analysis &
Compliance

- Trade History
- Exchange latency

- Historical DB
- Data Capture

- Data Publishing

- Analytics

- Back Testing

- Optimization

- Research Systems

- Matching
- Execution

- Risk Management

Follow	
 the	
 data	

!"#$%&'()*&+,(-."/&001+2
!"#$!"%##$&'(#$)'*'$+,-".'/

!"#$%$&'("'#)*&*+('%#,-#.,%)/0("'#1*2$+#,"#*"#34$"0#5&(4$"#!&.6(0$.0/&$#735!8#06*0#

,--$&2#06$#*1(9(0:#0,#*"*9:;$#$<0&$%$9:#9*&'$#*%,/"02#,-#$4$"0#7*"+#,06$&8#+*0*#-&,%#

+(2)*&*0$#2,/&.$2#=(06#4$&:#9,=#9*0$".:#*"+#6('6#06&,/'6)/0

34 0 1234'(/$12(5,6#(*,'7$0)#8#39#%$:;$<=:=

>*%#'3,(-$)'*'$?('7/*,8@
A12347#B$CD#(*$E%28#@@,(-F

G(HI#32%/$?('7/*,8@
AG(HI#32%/$)'*'9'@#F

I'@@$+,@*2%,8$6'*'$'('7/*,8@
A127J3('%$)'*'$>*2%#F

>*%#'3

6'*'

K4@$6'*'

>J9HI,77,@#82(6

I,(J*#L+2J%

>#82(6

Different	
 cores	
 for	
 different	
 chores 	
 	

FPGAs	

GPUs	

Many	

Cores	

Low-­‐
Power	

SOCs	

Ea
se
	
 o
f	
 P

ro
gr
am

m
in
g	

ApplicaJon-­‐Specific	
 Broad	
 Applicability	

Don’t	
 fight	
 the	
 last	
 war	

The	
 Era	
 of	
 the	
 	

CORE	
 WARS	
 The	
 Era	
 of	
 the	
 	

CLOCK	
 WARS	

The	
 Era	
 of	
 the	
 	

EFFICIENCY	
 WARS	

1990	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 2000	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 2010	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 2020 	
 	

SoOer	
 HW	
 or	
 harder	
 SW?	

!

!

!

PCI Express Card comprising:
• 4 SFP/SFP+ cages providing flexible 1/10Gbps

connectivity
• Tilera TILE-Gx8036™ Processor (64-bit, 36

cores, 1.2GHz) - two dedicated 1600MHz DDR3
SODIMMs

• Altera® Stratix® IV FPGA - 531,200
Eq. LEs – One dedicated DDR3 SODIMM

• High-precision (OCXO) Oven-compensated
Quartz Oscillator providing ultra-accurate
timestamping capability

• Generation 2 (5Gbps) x8 PCI Express bus
providing 40Gbps between card and host

Key Features:
• Optimised ultra-low-latency path between the

“wire” and the CPU
• FPGA is inline between card network interfaces

and CPU allowing it to process/manipulate raw
frames in-line with the CPU’s network
interfaces

• FPGA and CPU are also connected by a
dedicated 20Gbps PCI Express bus allowing
efficient DMA transfer between them

• Low power footprint of <75W allowing multiple
cards to be used in a single server if required

• Tilera’s Multicore Development Environment™
(MDE) included with Accensus user-space
libraries

Accensus also offers a subscription service to a range of Exchange Line Handlers designed and implemented to run on the TELAS 2™
card. These are implemented on the FPGA thus leaving all CPU cores available for application development. Each Line Handler
provides full packet to message decode, line arbitration and transformation to optimised C structs. Also planned for early 2012 are a
user-space TCP/IP stack with FPGA offload optimised for order management systems and advanced time stamping functionality.

Please contact sales@accensusllc.com for further information

!

OCXO!

CPU!DD
R3
!

SO
DI
MM

!

DD
R3
!

SO
DI
MM

!
SFP/SFP+!
SFP/SFP+! FPGA! DD

R3
!

SO
DI
MM

!

SFP/SFP+!

SFP/SFP+!

PCI!Express!

TELAS 2™ Card

Product Brief

An ultra-low-latency trading system on a card
TELAS 2™ (Trading Engine Latency-reduction and Acceleration System) is a revolutionary new product from
Accensus. It combines flexible 1/10Gbps network connectivity with a powerful in-line Altera® Stratix® IV FPGA and
the new Tilera TILE-Gx8036™ 36-core processor running Linux along with up to 24GB (8GB FPGA, 16GB Processor)
of DDR3 RAM on a single PCI Express card.

The TELAS 2™ architecture is designed from the outset to be ultra-low-latency allowing data to be received from the
wire at up to 40Gbps, optionally processed in-line by the FPGA chip then delivered to the processor where it is
processed by applications written in C/C++ running on an optimized Linux OS. The data can remain on the card for
processing or be transferred to the host if required. The transmit path is simply the reverse. This architecture allows
application developers the complete freedom to implement ultra-low-latency applications either in C/C++ or in
VHDL/Verilog or split across both if so desired. User applications may reside completely on the card or be split across
the card and the host server.

TELAS 2™ is built to be installed in commodity servers and provide both a significantly lower latency network path to
and from the card CPU than the that of the server and supplement server capacity by providing significant additional
compute and memory resource thus extending existing rack space and power utilisation.

© 2011 Accensus LLC, 200 South Wacker Drive, Chicago, IL 60606, USA

!

!

!

PCI Express Card comprising:
• 4 SFP/SFP+ cages providing flexible 1/10Gbps

connectivity
• Tilera TILE-Gx8036™ Processor (64-bit, 36

cores, 1.2GHz) - two dedicated 1600MHz DDR3
SODIMMs

• Altera® Stratix® IV FPGA - 531,200
Eq. LEs – One dedicated DDR3 SODIMM

• High-precision (OCXO) Oven-compensated
Quartz Oscillator providing ultra-accurate
timestamping capability

• Generation 2 (5Gbps) x8 PCI Express bus
providing 40Gbps between card and host

Key Features:
• Optimised ultra-low-latency path between the

“wire” and the CPU
• FPGA is inline between card network interfaces

and CPU allowing it to process/manipulate raw
frames in-line with the CPU’s network
interfaces

• FPGA and CPU are also connected by a
dedicated 20Gbps PCI Express bus allowing
efficient DMA transfer between them

• Low power footprint of <75W allowing multiple
cards to be used in a single server if required

• Tilera’s Multicore Development Environment™
(MDE) included with Accensus user-space
libraries

Accensus also offers a subscription service to a range of Exchange Line Handlers designed and implemented to run on the TELAS 2™
card. These are implemented on the FPGA thus leaving all CPU cores available for application development. Each Line Handler
provides full packet to message decode, line arbitration and transformation to optimised C structs. Also planned for early 2012 are a
user-space TCP/IP stack with FPGA offload optimised for order management systems and advanced time stamping functionality.

Please contact sales@accensusllc.com for further information

!

OCXO!

CPU!DD
R3
!

SO
DI
MM

!

DD
R3
!

SO
DI
MM

!

SFP/SFP+!
SFP/SFP+! FPGA! DD

R3
!

SO
DI
MM

!

SFP/SFP+!

SFP/SFP+!

PCI!Express!

TELAS 2™ Card

Product Brief

An ultra-low-latency trading system on a card
TELAS 2™ (Trading Engine Latency-reduction and Acceleration System) is a revolutionary new product from
Accensus. It combines flexible 1/10Gbps network connectivity with a powerful in-line Altera® Stratix® IV FPGA and
the new Tilera TILE-Gx8036™ 36-core processor running Linux along with up to 24GB (8GB FPGA, 16GB Processor)
of DDR3 RAM on a single PCI Express card.

The TELAS 2™ architecture is designed from the outset to be ultra-low-latency allowing data to be received from the
wire at up to 40Gbps, optionally processed in-line by the FPGA chip then delivered to the processor where it is
processed by applications written in C/C++ running on an optimized Linux OS. The data can remain on the card for
processing or be transferred to the host if required. The transmit path is simply the reverse. This architecture allows
application developers the complete freedom to implement ultra-low-latency applications either in C/C++ or in
VHDL/Verilog or split across both if so desired. User applications may reside completely on the card or be split across
the card and the host server.

TELAS 2™ is built to be installed in commodity servers and provide both a significantly lower latency network path to
and from the card CPU than the that of the server and supplement server capacity by providing significant additional
compute and memory resource thus extending existing rack space and power utilisation.

© 2011 Accensus LLC, 200 South Wacker Drive, Chicago, IL 60606, USA

!

!

!

PCI Express Card comprising:
• 4 SFP/SFP+ cages providing flexible 1/10Gbps

connectivity
• Tilera TILE-Gx8036™ Processor (64-bit, 36

cores, 1.2GHz) - two dedicated 1600MHz DDR3
SODIMMs

• Altera® Stratix® IV FPGA - 531,200
Eq. LEs – One dedicated DDR3 SODIMM

• High-precision (OCXO) Oven-compensated
Quartz Oscillator providing ultra-accurate
timestamping capability

• Generation 2 (5Gbps) x8 PCI Express bus
providing 40Gbps between card and host

Key Features:
• Optimised ultra-low-latency path between the

“wire” and the CPU
• FPGA is inline between card network interfaces

and CPU allowing it to process/manipulate raw
frames in-line with the CPU’s network
interfaces

• FPGA and CPU are also connected by a
dedicated 20Gbps PCI Express bus allowing
efficient DMA transfer between them

• Low power footprint of <75W allowing multiple
cards to be used in a single server if required

• Tilera’s Multicore Development Environment™
(MDE) included with Accensus user-space
libraries

Accensus also offers a subscription service to a range of Exchange Line Handlers designed and implemented to run on the TELAS 2™
card. These are implemented on the FPGA thus leaving all CPU cores available for application development. Each Line Handler
provides full packet to message decode, line arbitration and transformation to optimised C structs. Also planned for early 2012 are a
user-space TCP/IP stack with FPGA offload optimised for order management systems and advanced time stamping functionality.

Please contact sales@accensusllc.com for further information

!

OCXO!

CPU!DD
R3
!

SO
DI
MM

!

DD
R3
!

SO
DI
MM

!

SFP/SFP+!
SFP/SFP+! FPGA! DD

R3
!

SO
DI
MM

!

SFP/SFP+!

SFP/SFP+!

PCI!Express!

TELAS 2™ Card

Product Brief

An ultra-low-latency trading system on a card
TELAS 2™ (Trading Engine Latency-reduction and Acceleration System) is a revolutionary new product from
Accensus. It combines flexible 1/10Gbps network connectivity with a powerful in-line Altera® Stratix® IV FPGA and
the new Tilera TILE-Gx8036™ 36-core processor running Linux along with up to 24GB (8GB FPGA, 16GB Processor)
of DDR3 RAM on a single PCI Express card.

The TELAS 2™ architecture is designed from the outset to be ultra-low-latency allowing data to be received from the
wire at up to 40Gbps, optionally processed in-line by the FPGA chip then delivered to the processor where it is
processed by applications written in C/C++ running on an optimized Linux OS. The data can remain on the card for
processing or be transferred to the host if required. The transmit path is simply the reverse. This architecture allows
application developers the complete freedom to implement ultra-low-latency applications either in C/C++ or in
VHDL/Verilog or split across both if so desired. User applications may reside completely on the card or be split across
the card and the host server.

TELAS 2™ is built to be installed in commodity servers and provide both a significantly lower latency network path to
and from the card CPU than the that of the server and supplement server capacity by providing significant additional
compute and memory resource thus extending existing rack space and power utilisation.

© 2011 Accensus LLC, 200 South Wacker Drive, Chicago, IL 60606, USA

Data	
 reducJon	

target NIC. For verification, we have used the NEC Japan
stock information (see Section II) as events. The date of each
event is replaced by a sequence number in order to
continuously input events at the cycle level. As shown in Fig.
10, the logic successfully detects five change points, and it
achieves 20Gbps event processing performance; the clock
frequency is 156MHz and the data width is 128bits (i.e.,
156MHz x 128bit =19,968Mbps). It should be noted that it is
difficult for SQL-based systems to detect such change points
without having support for procedural languages.

6 10 1315 31

Smoothing &
Change-point analysis

Pr
ic

e
(Y

en
)

220
225
230
235
240
245
250
255
260
265

smoothed data

215
time

NIC

Figure 10. Implementation of our motivating example.

B. Logic Usage
We have evaluated how much the above implementation

increases slice logic utilization of our NIC FPGA. Since the
number of occupied slices increases only 2.7% (see Table
II), the entire logic, including our event processing adapter,
can be efficiently implemented.

TABLE II. LOGIC USAGE IN OUR MOTIVATING EXAMPLE
Item Available Increase

Number of slice registers 207,360 +2,492 (1.2%)
Number of slice LUTs 207,360 +4,290 (2.1%)

Number of occupied slices 51,840 +1,378 (2.7%)

VI. CONCLUSION

 The requirements for fast complex event processing will
necessitate hardware acceleration which uses reconfigurable
devices. Key to the success of our work is logic automation
generated with our C-based event language. With this
language, we have achieved both higher event processing
performance and higher flexibility for application designs
than those with SQL-based CEP systems. We have
demonstrated the world’s fastest (20Gbps) event processing
performance in a financial trading application on an FPGA-
based NIC. In future work, we intend to employ partial
reconfiguration for run-time function replacement.

ACKNOWLEDGMENTS

We thank T. Iihoshi, K. Ichino, O. Itoku, S. Kamiya, S.
Karino, S. Morioka, A. Motoki, M. Nishihara, M. Petersen,
H. Tagato, M. Tani, A. Tsuji, and N. Yamagaki for their
great contributions.

REFERENCES
[1] http://avid.cs.umass.edu/sase/index.php?page=navigation_menus
[2] D. J. Abadi, et al., “Aurora: a new model and architecture for data stream

management,” Intl. J. on Very Large Data Bases, vol. 12, issue 2, 120-139,
Aug. 2003.

[3] D. J. Abadi, et al., “The design of the Borelias stream processing engine,”
Biennial Conf. on Innovative Data Systems Research, 277-289, Jan. 2005.

[4] D. Anicic, et al., “A rule-based language for complex event processing and
reasoning,” Intl. Conf. on Web Reasoning and Rule Systems, 42-57, Sept. 2010.

[5] S. Chandrasekaran, et al., “TelegraphCQ: continuous dataflow processing for an
uncertain world,” Biennial Conf. on Innovative Data Systems Research, 269-
280, Jan. 2003.

[6] A. Demers, et al., “Cayuga: a general purpose event monitoring system,”
Biennial Conf. on Innovative Data Systems Research, 412-422, Jan. 2007.

[7] B. Gedik, et al., “SPADE: the System S declarative stream processing engine,”
ACM Intl. Conf. on Management of Data, 1123-1134, June 2008.

[8] D. Gyllstrom, J. Agrawal, Y. Diao, and N. Immerman, “On supporting kleene
closure over event streams,” Intl. Conf. on Data Engineering, 1391-1393, April
2008.

[9] J. Kraemer, and B. Seeger, “PIPES-a public infrastructure for processing and
exploring streams,” ACM Intl. Conf. on Management of Data, 925-926, June
2004.

[10] J. Naughton, et al., “The Niagara Internet query system,” IEEE Data
Engineering Bulletin, vol. 24, num. 1, 27-33, March 2001.

[11] The STREAM Group, “STREAM: The Stanford stream data manager,” IEEE
Data Engineering Bulletin, vol. 26, num. 1, 19-26, March 2003.

[12] M. R. Mendes, P. Bizarro, and P. Marques, “A performance study of event
processing systems,” Performance Evaluation and Benchmarking, vol. 5895,
221-236, 2009.

[13] L. Woods, J. Teubner, and G. Alonso, “Complex event detection at wire speed
with FPGAs,” Intl. Conf. on Very Large Data Bases, vol. 3, issue 1-2, 660-669,
Sept. 2010.

[14] OPRA, “Updated traffic projections 2011 & 2012,” http://www. opradata.com/
specs/upd_traffic_proj_11_12.pdf.

[15] R. Mueller, J. Teubner, and G. Alonso, “Streams over wires – a query compiler
for FPGAs,” Intl. Conf. on Very Large Data Bases, vol. 2, issue 1, 229-240,
Aug. 2009.

[16] NEC CyberWorkBench. http://www.nec.com/global/prod/cwb/
[17] F. Zemke, A. Witkowski, and M. Cherniak, “Pattern matching in sequences of

rows,” ANSI Standard Proposal, March 2007.
[18] R. B. Mandelbrot, and R. L. Hudson, “The (mis)behavior of markets – a fractal

view of risk, ruin, and reward,” Basic Books, March 2006.
[19] R. Sidhu, and V. Prasanna, “Fast regular expression matching using FPGAs,”

IEEE Symp. on Field-Programmable Custom Computing Machines, 227-238,
April 2001.

[20] Z. K. Baker, and V. K. Prasanna, “A methodology for the synthesis of efficient
intrusion detectoin systems on FPGAs,” IEEE Symp. on Field Programmable
Custom Computing Machine, 135-144, April 2004.

[21] F. Bruschi, M. Paolieri, and V. Rana, “A reconfigurable system based on a
parallel and pipelined solution for regular expression matching,” IEEE Intl.
Conf. on Field-Programmable Logic and Applications, 44-49, Sept. 2010.

[22] Y. H. Cho, S. Navab, and W. H. M.-Smith, “Specialized hardware for deep
network packet filtering,” Intl. Conf. on Field Programmable Logic and
Applications, 452-461, Sept. 2002.

[23] C. R. Clark, and D. E. Schimmel, “Efficient reconfigurable logic circuits for
matching complex network intrustion detection patterns,” Intl. Conf. on Field
Programmable Logic and Applications, 956-959, Sept. 2003.

[24] B. L. Hutchings, R. Franklin, and D. Carver, “Assisting network intrusion
detection with reconfigurable hardware,” IEEE Symp. on Field-Programmable
Custom Computing Machine, 111-120, April 2002.

[25] C.-H. Lin, C.-T. Huang, C.-P. Jiang, and S.-C. Chang, “Optimization of pattern
matching circuits for regular expression on FPGA,” IEEE Trans. on Very Large
Scale Integration Systems, vol 15, no. 12, 1303-1310, Dec. 2007.

[26] N. Yamagaki, R. Sidhu, and S. Kamiya, “High-speed regular expressin
matching engine using multi-character NFA,” IEEE Intl. Conf. on Field
Programmable Logic and Applications, 131-136, Sept. 2008.

[27] Altera, “Atlantic interface specification,” ver 3.0, June 2002.

+%)

Air Vents

Console Port

Management Port

USB Port
16	
 Base	
 SFP/SFP+	
 Ports	
 8	
 FX	
 SFP/SFP+	
 Ports	

Clock Input

somedata	
 =	
 (1,2,3);	
 otherdata	
 =	
 [1,2,3];	
 dict	
 =	
 [`a=1,	
 `b=2];	
 //	
 Note	
 these	
 are	
 different	
 types,	
 list	
 vs.	
 vector.	

type	
 area	
 =	
 `FX	
 |	
 `EquiJes	
 Int	
 |	
 `FixedIncome	
 Double	
 Double	

	

results@node0	
 with	
 f	
 =	
 #(id	
 ::	
 symbol;	
 profit	
 ::	
 double)	
 	

	

f	
 =	
 {(id,	
 area,	
 pnl)	

	
 	
 	
 var	
 profit	
 =	
 area?	
 `FX	
 :	
 pnl*.98	
 |	
 `EquiJes	
 x	
 :	
 pnl-­‐x	
 |	
 	
 `FixedIncome	
 x	
 y	
 :	
 pnl*(x-­‐y);	

	
 	
 	
 insert	
 (id,	
 profit)	
 into	
 results	

}	

	

jobs	
 =	
 select	
 id,	
 area,	
 parameters	
 from	
 strategies	
 where	
 date==today()	

	

simulate	
 =	
 {(job)	

	
 	
 	
 var	
 pnl	
 =	
 sum(random	
 *	
 1..10);	

	
 	
 	
 if	
 (pnl	
 >	
 100)	
 {send	
 (job.id,	
 job.	
 area,	
 pnl)	
 to	
 results;	
 (`ok,	
 pnl)}	

	
 	
 	
 else	
 (`fail,	
 pnl)	

}	

	

job_status	
 =	
 @[select	
 disJnct	
 processors	
 from	
 places]	
 {	

	
 	
 <-­‐[(x){begin	
 simulate(x)}	
 each	
 jobs]	

}	

	

failed_jobs	
 =	
 select	
 (status,	
 pnl)	
 from	
 job_status	
 where	
 status==`fail	

//	
 run	
 some	
 code	
 in	
 place	
 A;	
 block	
 unJl	
 it’s	
 done	

@A	
 {code}	

	

//	
 start	
 an	
 acJvity	
 f	
 in	
 place	
 B	
 and	
 return	
 immediately	

@B	
 begin	
 {f}	

	

//	
 run	
 some	
 code	
 in	
 place	
 C,	
 taking	
 ownership	
 of	
 data	

@c	
 with	
 data	
 {…}	
 //	
 bind	
 data	
 to	
 place	

	

//	
 distribute	
 data	
 over	
 place1	
 and	
 place	
 2	

@[place1,	
 place2]	
 data;	
 	

	

//	
 redundant	
 copies	
 of	
 data	
 in	
 place1	
 and	
 place	
 2;	
 also	
 works	
 for	
 redundant	
 computaJon	

@[place1],	
 [place2]	
 data;	

	

//	
 Run	
 f	
 in	
 the	
 fastest	
 place	
 we	
 can	

var	
 c	
 =	
 select	
 core-­‐id	
 from	
 processors	
 where	
 max	
 frequency	

@c	
 {f(`somedata)}	

	

//	
 Queue	
 work	
 in	
 parent	

@parent	
 {code}	

	

//	
 Reply	

@reply	
 {code}	

Open	
 Problems	

•  Machines	
 are	
 already	
 beyond	
 our	
 ability	
 to	

program	
 producJvely	
 with	
 high	
 performance	

•  It’s	
 gevng	
 harder	
 to	
 observe,	
 understand,	
 debug	

&	
 tune	
 our	
 broken	
 programs/machines	

•  Where	
 is	
 the	
 inconsistency	
 coming	
 from?	

•  What	
 implicit	
 effects	
 are	
 we	
 suffering	
 from?	

•  How	
 do	
 we	
 cope	
 with	
 increasing	
 diversity?	

•  What	
 do	
 we	
 need	
 to	
 give	
 up	
 to	
 get	
 some	
 help?	

Hot topics in parallelism
in data management

Goetz Graefe
Hewlett-Packard Laboratories

Palo Alto, Cal. – Madison, Wis.

June 8, 2012 2

History
•  Concurrency among independent transactions

Each transaction single-threaded
1960s, 1970s, …

•  Parallel query processing (within a transaction)
Teradata 1983-84 specialized hardware
Gamma 1984-88 off-the-shelf hardware
Pipelines for algebraic execution
Partitioning intermediate results

June 8, 2012 3

Transactions
ACID = atomicity, consistency, isolation, durability
•  User transactions

Database contents queries & updates
Locks held to transaction commit
Rollback using recovery log

•  System transactions
Database representation changes, e.g., B-tree node split
In-memory data structures, “latches”

June 8, 2012 4

Two types of transactions
User transactions System transactions

Invocation source User request System-internal

Database effects Logical database contents Physical database
representation

Data location Database or buffer pool In-memory page images

Invocation overhead New thread Same thread

Locks Acquire & retain Test for conflicts

Commit overhead Force log to stable storage No forcing

Logging Full “redo” & “undo” “Redo” only usually

Failure recovery Rollback Completion

Hardware opportunity Non-volatile memory Transactional memory

June 8, 2012 5

Two types of concurrency control
Locks Latches

Separate… User transactions Threads
Protect… Database contents In-memory data structures
During… Entire transactions Critical sections
Modes: Shared, exclusive, update,

intention, escrow, schema
Shared, exclusive

Deadlock… Detection & resolution Avoidance
… by… Waits-for graph analysis,

timeout, transaction abort,
partial rollback, lock de-
escalation

Coding discipline, lock
leveling

Kept in… Lock manager’s hash
table

Protected data structure

June 8, 2012 6

Current trends and challenges
•  Scalability

Query processing versus map-reduce (Hadoop etc.)
Data mining, business intelligence, analytics
Utilities (load, reorganization, …)

•  Implementation techniques
Low-level synchronization
Transactional memory
Non-volatile memory
Other novel hardware

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Me: Russell Williams. My product: Photoshop

1

•  Huge cross-platform code base on single threaded framework

•  Parallel computation since mid-90s using basic parallel_for

•  Scaling falls off beyond 4 cores for many operations.

•  Must trade off throughput for latency

•  Proliferation of thread pools

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Challenges — structure of the problem

2

•  Asynchrony vs. parallel compute

•  Available parallelism
•  Amdahl’s law vs. events, views, PCI bus
•  On server, parallelize per user. On desktop: one user
•  Bandwidth limited — FLOPS / memory reference

•  80-core chips not coming; so"ware can’t use ‘em.

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Challenges — structure of the solutions

3

•  Heterogeneous environment
•  C machine vs. data parallel, high latency, high throughput
•  Different cache / memory hierarchies

•  Rapidly changing hardware landscape
•  Discrete->Integrated GPU
•  SSE -> AVX -> AVX2 -> AVX3

•  __m128i vDst = _mm_cv#ps_epi32(_mm_mul_ps(_mm_cvtepi32_ps
(vSum0), vInvArea));

•  Variety, rapid evolution, and fragmentation of tools
•  CUDA / DX / OpenCL / C++ AMP, vectorizing compilers

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Intrinsics
/ Auto-

vec

Desktop GFlops (8-core 3.5GHz Sandy Bridge + AMD 6950)

4

Straight
C++

OpenGL /
OpenCL /
C++ AMP

TBB
GCD

0 500 1000 1500 2000 2500 3000

GPU CPU Vector Unit Multi-thread Scalar (GFlops)

	intro
	andrew
	nialldalton_slides
	goetz-pnael
	russell

