Parallel Programming in the Real World!

Andrew Brownsword, Intel
Niall Dalton

Goetz Graefe, HP Labs
Russell Williams, Adobe

* Moderator: Luis Ceze, UW-CSE

Parallelism in the
“Real” World

Where: Real € {games, hpc}

Andrew Brownsword
MIC SW Architect
Intel Corporation

“Real” software is...

Large, unwieldy, and long lived
Much longer & larger than intended
especially by the authors!

Written by many people

Of widely ranged skills, styles, agendas, experiences
Many have moved on to [next task..next life]

Hard to change
Even with language-aware tools

“Real” software is...

Expressed in and defined by programming
models

Many levels of abstraction, concreteness,
explicitness, constraints
o Best balance depends on goals & changes over time

Compilers only understand the programming
model...
...not the abstractions built in it

“Real” parallel software is...

Supposed to be fast
But performance is extremely fragile

Supposed to be robust
Data races, deadlocks, livelocks, etc
Composabillity

Supposed to be maintainable
Critical aspects often hidden in the details

Brief survey of the “Real” landscape

Implications for programming models

Games

Games — code & platform

Medium-to-large codebases
50K-5M lines of code, largely C++
May have large tool chains & online infrastructure

Many diverse sub-systems running at once
“Soft” real-time, broad range of data set sizes
Frame-oriented scheduling (mostly)

Many sequencing dependencies between tasks

Target hardware “is what it is”
Phones to servers, performance is critical
Multi-core, heterogeneous, SIMD, GPU, networks

Games — many systems

1 Fetch Previous
G rap h I CS Itiramerg‘tl:lzlt:aj

Environment =
Audio |i - | .
Game logi (==

Al & scripting
Physics
User Interface

\ Setup
Inputs |

i Particle Submission
Network |
/0 (streaming) B= =2

Particle Skinning &
Physics Damage

Animation
Posing

N\

Data conversion / processing - Post onder
Effects

Note that this slide is a gross over-simplification!

Games — dev process

Short development cycles
Severe code churn, high pressure to deliver quickly
Middleware & game “engine” use common

Rapidly changing feature requirements
Fast iteration during development is critical
Code & architecture maintenance nightmare

Substantial volume & variety of media data
Content team size greatly exceeds engineering’s

Porting between diverse platforms iIs common

HPC

HPC — code & platform

Widely varying codebases & domains
10K-10M+ lines of code

Diverse programming models
o Fortran, C/C++, MPI, OpenMP dominate

Few kernels*, BIG data*

Correctness & robustness are critical*
Epic, titanic, gargantuan data sets*

Varied target hardware
Workstations to large clusters
Often purchased for the application

* Usually

HPC — dev process

On-going development cycles
Code is generally never re-written, lasts for decades
Huge, poorly understood legacy code
Heavy library use (math, solvers, communications, etc.)

Correctness, verifiability, robustness
Dependability of results is crucial
Very, very long running times are common

Portablility across generations & platforms
Tuning ‘knobs’ exposed rather than changing the code
Outlast HW, tools, vendors, prog. models, authors

Programming Models

Programming Models

Design of the model has formative impact
on software written in it

Abstractions to avoid over-specifying details
Concrete to allow control over solution
Explicit to keep critical detail visible
Constraints to allow effective optimization

For parallelism:

Top desirable attributes
Top factors to address

Desirable Attributes...

Integration

With other models:
Existing model, enables gradual adoption
Peer models, there is no single silver bullet
Layered models, enables DSLs & interop

With runtimes:
Interaction & interop within processes
Resource management (processors, memory, 1/O)

With tools:
Build systems, analysis tools, design tools
Debuggers, profilers, etc.

Portability

Hardware, OS & vendor independence
Standard, portable models live longer

Investment in software is very expensive
Re-writing Is often simply not an option

Even seemingly small changes can be
extraordinarily expensive

o Testing & validation costs
o Architectural implications

Composability

Real software Is large and complex
Built by many people
Built out of components
Subject to intricate system level behaviours

Programming models must facilitate and
support these aspects

Factors To Address...

Concurrent Execution

Multiple levels to achieve performance

Vectorization (SIMD & throughput optimization)
Parallelization (multi/many-core)
Distributed (cluster-level)

Internet (loosely coupled, client/server, cloud services)

Programming model needs to express each level
Each level brings >10x potential

Cannot afford a different decomposition at each level

Data Organization & Access

FLOPS are cheap, bandwidth is not

Severe and worsening imbalance
No sign of this changing

Optimizing data access Is usually key to
achieving performance & power

Existing models do very little to address this
Access patterns usually implicit, layouts explicit
Changing data layout requires changing code

Different hardware, algorithms & models demand
different layouts

Specialization

Hardware is diversifying
Heterogeneous processors (CPU, GPU, etc)
Fixed function hardware
System-on-chip

Driven by power & performance

Tight integration needed for fine-grained
Interactions & data

NYSE TAQ record counts

3 ¥ ¥ 483833388 :CC3C¢CGc 0G5S S
D -8 8 B P P B ¥ ¥ v @ v e

An elegant weapon..
for a more civilized age

Trade lifecycle

(

* Post Trade
Analysis &
Compliance

\
(* Data Storage &
Analysis

Historical DB

- Trade History Data Capture

. - Exchange latency Data Publishing

Analytics

- Matchin
- - Back Testing
- Execution
e - Optimization
- Risk Management
- Research Systems
* Strategy Strategy

Deployment &
Management

Development &
Testing

Follow the data

Stream SEMStreaming Data Analytics Suti-Millisecond
data e Complex Event Processing)

0
-

Different cores for different chores

Ease of Programming

< >
Application-Specific Broad Applicability

Don’t fight the last war

The Era of the
The Era of the EFFICIENCY WARS

CORE WARS

The Era of the
CLOCK WARS

1990 2000 2010 2020

Softer HW or harder SW?

SFP/SFP+
= = =
SFP/SFP+ =4S S S

SFP/SFP+

PCI Express Card comprising:

4 SFP/SFP+ cages providing flexible 1/10Gbps
connectivity

Tilera TILE-Gx8036™ Processor (64-bit, 36
cores, 1.2GHz) - two dedicated 1600MHz DDR3
SODIMMs

Altera® Stratix® IV FPGA - 531,200

Eqg. LEs - One dedicated DDR3 SODIMM
High-precision (OCX0) Oven-compensated
Quartz Oscillator providing ultra-accurate
timestamping capability

Generation 2 (5Gbps) x8 PCI Express bus
providing 40Gbps between card and host

Data reduction

Smoothing &
Change-point analysis

265
260l — smoothed data

N\

215776 10{7375 \

N
(3]
(3]

250
245
240

Price (Yen)

NNDNDN
NN W®
O U1LO O

) \ ‘_-
[M M \
N
1 | [|
| | L/ [
] 16 R 1 i
OO Y N O O
I] NN NN MWW W Yoo XN
0000300
0000000

8 FX SFP/SFP+ Ports

(%]
fhis
C
O
a
+
[a W
L
(%]
S~
[a W
(N
(Vp]
()
(7]
T
o
(Vo]
—

somedata = (1,2,3); otherdata = [1,2,3]; dict = ['a=1, 'b=2]; // Note these are different types, list vs. vector.
type area = 'FX | "Equities Int | "FixediIncome Double Double

results@node0 with f = #(id :: symbol; profit :: double)

f={(id, area, pnl)
var profit = area? 'FX : pnl*.98 | 'Equities x : pnl-x | "Fixedlncome x y : pnl*(x-y);
insert (id, profit) into results

}

jobs = select id, area, parameters from strategies where date==today()

simulate = {(job)
var pnl = sum(random * 1..10);
if (pnl > 100) {send (job.id, job. area, pnl) to results; (‘ok, pnl)}
else (fail, pnl)

}

job_status = @[select distinct processors from places] {
<-[(x){begin simulate(x)} each jobs]

}

failed_jobs = select (status, pnl) from job_status where status=="fail

// run some code in place A; block until it’s done
@A {code}

// start an activity f in place B and return immediately
@B begin {f}

// run some code in place C, taking ownership of data
@c with data {...} // bind data to place

// distribute data over placel and place 2
@[placel, place2] data;

// redundant copies of data in placel and place 2; also works for redundant computation
@[placel], [place2] data;

// Run fin the fastest place we can
var c = select core-id from processors where max frequency
@c {f('somedata)}

// Queue work in parent
@parent {code}

// Reply
@reply {code}

Open Problems

Machines are already beyond our ability to
program productively with high performance

It’s getting harder to observe, understand, debug
& tune our broken programs/machines

Where is the inconsistency coming from?
What implicit effects are we suffering from?
How do we cope with increasing diversity?
What do we need to give up to get some help?

Hot topics in parallelism
in data management

Goetz Graete

Hewlett-Packard Laboratories
Palo Alto, Cal. — Madison, Wis.

History

* Concurrency among independent transactions

Each transaction single-threaded
1960s, 1970s, ...

 Parallel query processing (within a transaction)
Teradata 1983-84 specialized hardware
Gamma 1984-88 off-the-shelf hardware
Pipelines for algebraic execution

Partitioning intermediate results

wl\
,/’ June 8, 2012

Transactions

ACID = atomicity, consistency, 1solation, durability
e User transactions

Database contents queries & updates
Locks held to transaction commit
Rollback using recovery log
* System transactions
Database representation changes, e.g., B-tree node split
In-memory data structures, “latches”

wl\
,/’ June 8, 2012

Two types of transactions

User transactions

System transactions

Invocation source

User request

System-internal

Database effects

Logical database contents

Physical database
representation

Data location

Database or buffer pool

In-memory page images

Invocation overhead

New thread

Same thread

Locks

Acquire & retain

Test for conflicts

Commit overhead

Force log to stable storage

No forcing

Logging

Full “redo” & “undo”

“Redo” only usually

Failure recovery

Rollback

Completion

Hardware opportunity

Non-volatile memory

Transactional memory

@ June 8, 2012

Two types of concurrency control

Locks Latches

Separate... User transactions Threads

Protect... Database contents In-memory data structures

During... Entire transactions Critical sections

Modes: Shared, exclusive, update, | Shared, exclusive
intention, escrow, schema

Deadlock... Detection & resolution Avoidance

.. by... Waits-for graph analysis, | Coding discipline, lock

timeout, transaction abort, | leveling
partial rollback, lock de-
escalation

Kept in... Lock manager’ s hash Protected data structure
table

@ June 8, 2012

Current trends and challenges
» Scalability

Query processing versus map-reduce (Hadoop etc.)
Data mining, business intelligence, analytics
Utilities (load, reorganization, ...)

* Implementation techniques
Low-level synchronization
Transactional memory
Non-volatile memory

Other novel hardware

@ June 8, 2012

Me: Russell Williams. My product: Photoshop

Huge cross-platform code base on single threaded framework

Parallel computation since mid-90s using basic parallel_for

Scaling falls off beyond 4 cores for many operations.

Must trade off throughput for latency

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Proliferation of thread pools

Challenges — structure of the problem

* Asynchrony vs. parallel compute

* Available parallelism

 Amdahl's law vs. events, views, PCl bus
* On server, parallelize per user. On desktop: one user
» Bandwidth limited — FLOPS / memory reference

* 80-core chips not coming; software can't use ‘em.

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Challenges — structure of the solutions

* Heterogeneous environment
» Cmachine vs. data parallel, high latency, high throughput
» Different cache / memory hierarchies

 Rapidly changing hardware landscape

* Discrete->Integrated GPU
* SSE -> AVX -> AVX2 -> AVX3

« _ ml128ivDst=_mm_cvttps_epi32(_mm_mul_ps(_mm_cvtepi32_ps
(vSumO), vinvArea));

* Variety, rapid evolution, and fragmentation of tools
 CUDA /DX / OpenCL / C++ AMP, vectorizing compilers

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Desktop GFlops (8-core 3.5GHz Sandy Bridge + AMD 6950)

OpenGL / Intrinsics

OpenCL/ | / Auto- ol

\/

0 500 1000 1500 2000 2500 3000

BGPU ™CPU Vector Unit ™ Multi-thread ™Scalar (GFlops)

© 2011 Adobe Systems Incorporated. All Rights Reserved.

	intro
	andrew
	nialldalton_slides
	goetz-pnael
	russell

