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“ ” software is… 

 Large, unwieldy, and long lived 

 Much longer & larger than intended 

 especially by the authors! 

 

 Written by many people 

 Of widely ranged skills, styles, agendas, experiences 

 Many have moved on to [next_task..next_life] 

 

 Hard to change 

 Even with language-aware tools 



“ ” software is… 

 Expressed in and defined by programming 

models 

 

 Many levels of abstraction, concreteness, 

explicitness, constraints  

○ Best balance depends on goals & changes over time 

 

 Compilers only understand the programming 

model… 

         …not the abstractions built in it 



“ ” parallel software is… 

 Supposed to be fast 

 But performance is extremely fragile 

 

 Supposed to be robust 

 Data races, deadlocks, livelocks, etc 

 Composability 

 

 Supposed to be maintainable 

 Critical aspects often hidden in the details 



 

1. Brief survey of the “ ” landscape 

 

2. Implications for programming models 



Games 

 



Games – code & platform 

 Medium-to-large codebases 
 50K-5M lines of code, largely C++ 

 May have large tool chains & online infrastructure 

 

 Many diverse sub-systems running at once 
 “Soft” real-time, broad range of data set sizes 

 Frame-oriented scheduling (mostly) 

 Many sequencing dependencies between tasks 

 

 Target hardware “is what it is” 
 Phones to servers, performance is critical 

 Multi-core, heterogeneous, SIMD, GPU, networks 



Games – many systems 

 Graphics 

 Environment 

 Audio 

 Animation 

 Game logic 

 AI & scripting 

 Physics 

 User Interface 

 Inputs 

 Network 

 I/O (streaming) 

 Data conversion / processing 

 

Note that this slide is a gross over-simplification! 



Games – dev process 

 Short development cycles 
 Severe code churn, high pressure to deliver quickly 

 Middleware & game “engine” use common 

 

 Rapidly changing feature requirements 
 Fast iteration during development is critical 

 Code & architecture maintenance nightmare 

 

 Substantial volume & variety of media data 
 Content team size greatly exceeds engineering’s 

 

 Porting between diverse platforms is common 



HPC 

 



HPC – code & platform 

 Widely varying codebases & domains 
 10K-10M+ lines of code 

 Diverse programming models 
○ Fortran, C/C++, MPI, OpenMP dominate 

 

 Few kernels*, BIG data* 
 Correctness & robustness are critical* 

 Epic, titanic, gargantuan data sets* 

 

 Varied target hardware 
 Workstations to large clusters 

 Often purchased for the application 

 

* Usually 



HPC – dev process 

 On-going development cycles 
 Code is generally never re-written, lasts for decades 

 Huge, poorly understood legacy code 

 Heavy library use (math, solvers, communications, etc.) 

 

 Correctness, verifiability, robustness 
 Dependability of results is crucial 

 Very, very long running times are common 

 

 Portability across generations & platforms 
 Tuning ‘knobs’ exposed rather than changing the code 

 Outlast HW, tools, vendors, prog. models, authors 

 



Programming Models 

 



Programming Models 

 Design of the model has formative impact 
on software written in it 
 Abstractions to avoid over-specifying details 

 Concrete to allow control over solution 

 Explicit to keep critical detail visible 

 Constraints to allow effective optimization 

 

 For parallelism: 
 Top desirable attributes 

 Top factors to address 



Desirable Attributes… 

 



Integration 

 With other models: 
 Existing model, enables gradual adoption 

 Peer models, there is no single silver bullet 

 Layered models, enables DSLs & interop 

 

 With runtimes: 
 Interaction & interop within processes 

 Resource management (processors, memory, I/O) 

 

 With tools: 
 Build systems, analysis tools, design tools 

 Debuggers, profilers, etc. 



Portability 

 Hardware, OS & vendor independence 

 

 Standard, portable models live longer 

 

 Investment in software is very expensive 
 Re-writing is often simply not an option 

 Even seemingly small changes can be 
extraordinarily expensive 

○ Testing & validation costs 

○ Architectural implications 



Composability 

 Real software is large and complex 

 Built by many people 

 Built out of components 

 Subject to intricate system level behaviours 

 

 Programming models must facilitate and 

support these aspects 

 



Factors To Address… 

 



Concurrent Execution 

 Multiple levels to achieve performance 

 Vectorization (SIMD & throughput optimization) 

 Parallelization (multi/many-core) 

 Distributed (cluster-level) 

 Internet (loosely coupled, client/server, cloud services) 

 

 Programming model needs to express each level 

 Each level brings >10x potential 

 Cannot afford a different decomposition at each level 



Data Organization & Access 

 FLOPS are cheap, bandwidth is not 
 Severe and worsening imbalance 

 No sign of this changing 

 

 Optimizing data access is usually key to 
achieving performance & power 

 

 Existing models do very little to address this 
 Access patterns usually implicit, layouts explicit 

 Changing data layout requires changing code 

 Different hardware, algorithms & models demand 
different layouts 



Specialization 

 Hardware is diversifying 

 Heterogeneous processors (CPU, GPU, etc) 

 Fixed function hardware 

 System-on-chip 

 

 Driven by power & performance 

 

 Tight integration needed for fine-grained 

interactions & data 



NYSE	
  TAQ	
  record	
  counts	
  



An	
  elegant	
  weapon..	
  	
  
for	
  a	
  more	
  civilized	
  age	
  



Trade	
  lifecycle	
  

•  Strategy 
Development & 
Testing 

•  Strategy 
Deployment & 
Management 

• Data Storage & 
Analysis 

•  Post Trade 
Analysis & 
Compliance 

- Trade History 
- Exchange latency 

 

 

-  Historical DB 
-  Data  Capture 

-  Data Publishing 

-  Analytics 
 

 

 
- Back Testing 

- Optimization 

- Research Systems 

- Matching 
- Execution  

- Risk Management 



Follow	
  the	
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PCI Express Card comprising: 
• 4 SFP/SFP+ cages providing flexible 1/10Gbps 

connectivity 
• Tilera TILE-Gx8036™ Processor (64-bit, 36 

cores, 1.2GHz) - two dedicated 1600MHz DDR3 
SODIMMs 

• Altera® Stratix® IV FPGA - 531,200 
Eq. LEs – One dedicated DDR3 SODIMM 

• High-precision (OCXO) Oven-compensated 
Quartz Oscillator providing ultra-accurate 
timestamping capability 

• Generation 2 (5Gbps) x8 PCI Express bus 
providing 40Gbps between card and host 
 

Key Features: 
• Optimised ultra-low-latency path between the 

“wire” and the CPU  
• FPGA is inline between card network interfaces 

and CPU allowing it to process/manipulate raw 
frames in-line with the CPU’s network 
interfaces 

• FPGA and CPU are also connected by a 
dedicated 20Gbps PCI Express bus allowing 
efficient DMA transfer between them 

• Low power footprint of <75W allowing multiple 
cards to be used in a single server if required 

• Tilera’s Multicore Development Environment™ 
(MDE) included with Accensus user-space 
libraries 

 
 
 
 
Accensus also offers a subscription service to a range of Exchange Line Handlers designed and implemented to run on the TELAS 2™ 
card. These are implemented on the FPGA thus leaving all CPU cores available for application development. Each Line Handler 
provides full packet to message decode, line arbitration and transformation to optimised C structs. Also planned for early 2012 are a 
user-space TCP/IP stack with FPGA offload optimised for order management systems and advanced time stamping functionality. 
 
Please contact sales@accensusllc.com for further information 
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Product Brief 

An ultra-low-latency trading system on a card 
TELAS 2™ (Trading Engine Latency-reduction and Acceleration System) is a revolutionary new product from 
Accensus. It combines flexible 1/10Gbps network connectivity with a powerful in-line Altera® Stratix® IV FPGA and 
the new Tilera TILE-Gx8036™ 36-core processor running Linux along with up to 24GB (8GB FPGA, 16GB Processor) 
of DDR3 RAM on a single PCI Express card. 

The TELAS 2™ architecture is designed from the outset to be ultra-low-latency allowing data to be received from the 
wire at up to 40Gbps, optionally processed in-line by the FPGA chip then delivered to the processor where it is 
processed by applications written in C/C++ running on an optimized Linux OS. The data can remain on the card for 
processing or be transferred to the host if required. The transmit path is simply the reverse. This architecture allows 
application developers the complete freedom to implement ultra-low-latency applications either in C/C++ or in 
VHDL/Verilog or split across both if so desired. User applications may reside completely on the card or be split across 
the card and the host server. 

TELAS 2™ is built to be installed in commodity servers and provide both a significantly lower latency network path to 
and from the card CPU than the that of the server and supplement server capacity by providing significant additional 
compute and memory resource thus extending existing rack space and power utilisation. 

© 2011 Accensus LLC, 200 South Wacker Drive, Chicago, IL 60606, USA 
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Data	
  reducJon	
  

target NIC. For verification, we have used the NEC Japan 
stock information (see Section II) as events. The date of each 
event is replaced by a sequence number in order to 
continuously input events at the cycle level. As shown in Fig. 
10, the logic successfully detects five change points, and it 
achieves 20Gbps event processing performance; the clock 
frequency is 156MHz and the data width is 128bits (i.e.,
156MHz x 128bit =19,968Mbps). It should be noted that it is 
difficult for SQL-based systems to detect such change points 
without having support for procedural languages.  
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Figure 10. Implementation of our motivating example. 

B. Logic Usage 
We have evaluated how much the above implementation 

increases slice logic utilization of our NIC FPGA. Since the 
number of occupied slices increases only 2.7% (see Table 
II), the entire logic, including our event processing adapter, 
can be efficiently implemented.  

TABLE II. LOGIC USAGE IN OUR MOTIVATING EXAMPLE
Item Available Increase 

Number of slice registers 207,360 +2,492  (1.2%) 
Number of slice LUTs 207,360 +4,290  (2.1%) 

Number of occupied slices 51,840 +1,378  (2.7%) 

VI. CONCLUSION

 The requirements for fast complex event processing will 
necessitate hardware acceleration which uses reconfigurable 
devices. Key to the success of our work is logic automation 
generated with our C-based event language. With this 
language, we have achieved both higher event processing 
performance and higher flexibility for application designs 
than those with SQL-based CEP systems. We have 
demonstrated the world’s fastest (20Gbps) event processing 
performance in a financial trading application on an FPGA-
based NIC. In future work, we intend to employ partial 
reconfiguration for run-time function replacement. 
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somedata	
  =	
  (1,2,3);	
  otherdata	
  =	
  [1,2,3];	
  dict	
  =	
  [`a=1,	
  `b=2];	
  //	
  Note	
  these	
  are	
  different	
  types,	
  list	
  vs.	
  vector.	
  
type	
  area	
  =	
  `FX	
  |	
  `EquiJes	
  Int	
  |	
  `FixedIncome	
  Double	
  Double	
  
	
  
results@node0	
  with	
  f	
  =	
  #(id	
  ::	
  symbol;	
  profit	
  ::	
  double)	
  	
  
	
  
f	
  =	
  {(id,	
  area,	
  pnl)	
  
	
  	
  	
  var	
  profit	
  =	
  area?	
  `FX	
  :	
  pnl*.98	
  |	
  `EquiJes	
  x	
  :	
  pnl-­‐x	
  |	
  	
  `FixedIncome	
  x	
  y	
  :	
  pnl*(x-­‐y);	
  
	
  	
  	
  insert	
  (id,	
  profit)	
  into	
  results	
  
}	
  
	
  
jobs	
  =	
  select	
  id,	
  area,	
  parameters	
  from	
  strategies	
  where	
  date==today()	
  
	
  
simulate	
  =	
  {(job)	
  
	
  	
  	
  var	
  pnl	
  =	
  sum(random	
  *	
  1..10);	
  
	
  	
  	
  if	
  (pnl	
  >	
  100)	
  {send	
  (job.id,	
  job.	
  area,	
  pnl)	
  to	
  results;	
  (`ok,	
  pnl)}	
  
	
  	
  	
  else	
  (`fail,	
  pnl)	
  
}	
  
	
  
job_status	
  =	
  @[select	
  disJnct	
  processors	
  from	
  places]	
  {	
  
	
  	
  <-­‐[(x){begin	
  simulate(x)}	
  each	
  jobs]	
  
}	
  
	
  
failed_jobs	
  =	
  select	
  (status,	
  pnl)	
  from	
  job_status	
  where	
  status==`fail	
  



//	
  run	
  some	
  code	
  in	
  place	
  A;	
  block	
  unJl	
  it’s	
  done	
  
@A	
  {code}	
  
	
  
//	
  start	
  an	
  acJvity	
  f	
  in	
  place	
  B	
  and	
  return	
  immediately	
  
@B	
  begin	
  {f}	
  
	
  
//	
  run	
  some	
  code	
  in	
  place	
  C,	
  taking	
  ownership	
  of	
  data	
  
@c	
  with	
  data	
  {…}	
  //	
  bind	
  data	
  to	
  place	
  
	
  
//	
  distribute	
  data	
  over	
  place1	
  and	
  place	
  2	
  
@[place1,	
  place2]	
  data;	
  	
  
	
  
//	
  redundant	
  copies	
  of	
  data	
  in	
  place1	
  and	
  place	
  2;	
  also	
  works	
  for	
  redundant	
  computaJon	
  
@[place1],	
  [place2]	
  data;	
  
	
  
//	
  Run	
  f	
  in	
  the	
  fastest	
  place	
  we	
  can	
  
var	
  c	
  =	
  select	
  core-­‐id	
  from	
  processors	
  where	
  max	
  frequency	
  
@c	
  {f(`somedata)}	
  
	
  
//	
  Queue	
  work	
  in	
  parent	
  
@parent	
  {code}	
  
	
  
//	
  Reply	
  
@reply	
  {code}	
  



Open	
  Problems	
  

•  Machines	
  are	
  already	
  beyond	
  our	
  ability	
  to	
  
program	
  producJvely	
  with	
  high	
  performance	
  

•  It’s	
  gevng	
  harder	
  to	
  observe,	
  understand,	
  debug	
  
&	
  tune	
  our	
  broken	
  programs/machines	
  

•  Where	
  is	
  the	
  inconsistency	
  coming	
  from?	
  
•  What	
  implicit	
  effects	
  are	
  we	
  suffering	
  from?	
  
•  How	
  do	
  we	
  cope	
  with	
  increasing	
  diversity?	
  
•  What	
  do	
  we	
  need	
  to	
  give	
  up	
  to	
  get	
  some	
  help?	
  



Hot topics in parallelism 
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History 
•  Concurrency among independent transactions 

Each transaction single-threaded 
1960s, 1970s, … 

•  Parallel query processing (within a transaction) 
Teradata 1983-84 specialized hardware 
Gamma 1984-88 off-the-shelf hardware 
Pipelines for algebraic execution 
Partitioning intermediate results 
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Transactions 
ACID = atomicity, consistency, isolation, durability 
•  User transactions 

Database contents queries & updates 
Locks held to transaction commit 
Rollback using recovery log 

•  System transactions 
Database representation changes, e.g., B-tree node split 
In-memory data structures, “latches” 



June 8, 2012 4 

Two types of transactions 
User transactions System transactions 

Invocation source User request System-internal 

Database effects Logical database contents Physical database 
representation 

Data location Database or buffer pool In-memory page images 

Invocation overhead New thread Same thread 

Locks Acquire & retain Test for conflicts 

Commit overhead Force log to stable storage No forcing 

Logging Full “redo” & “undo” “Redo” only usually 

Failure recovery Rollback Completion 

Hardware opportunity Non-volatile memory Transactional memory 
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Two types of concurrency control 
Locks Latches 

Separate… User transactions Threads 
Protect… Database contents In-memory data structures 
During… Entire transactions Critical sections 
Modes: Shared, exclusive, update, 

intention, escrow, schema 
Shared, exclusive 

Deadlock… Detection & resolution Avoidance 
… by… Waits-for graph analysis, 

timeout, transaction abort, 
partial rollback, lock de-
escalation 

Coding discipline, lock 
leveling 

Kept in… Lock manager’s hash 
table 

Protected data structure 



June 8, 2012 6 

Current trends and challenges 
•  Scalability 

Query processing versus map-reduce (Hadoop etc.) 
Data mining, business intelligence, analytics 
Utilities (load, reorganization, …) 

•  Implementation techniques 
Low-level synchronization 
Transactional memory 
Non-volatile memory 
Other novel hardware 
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Me: Russell Williams. My product: Photoshop 

1 

•  Huge cross-platform code base on single threaded framework 

•  Parallel computation since mid-90s using basic parallel_for 

•  Scaling falls off beyond 4 cores for many operations. 

•  Must trade off throughput for latency 

•  Proliferation of thread pools 
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Challenges — structure of the problem 

2 

•  Asynchrony vs. parallel compute 

•  Available parallelism  
•  Amdahl’s law vs. events, views, PCI bus 
•  On server, parallelize per user. On desktop: one user 
•  Bandwidth limited — FLOPS / memory reference 

•  80-core chips not coming; so"ware can’t use ‘em. 
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Challenges — structure of the solutions 

3 

•  Heterogeneous environment 
•  C machine vs. data parallel, high latency, high throughput 
•  Different cache / memory hierarchies 

•  Rapidly changing hardware landscape 
•  Discrete->Integrated GPU  
•  SSE -> AVX -> AVX2 -> AVX3 

•  __m128i vDst = _mm_cv#ps_epi32(_mm_mul_ps(_mm_cvtepi32_ps
(vSum0), vInvArea)); 

•  Variety, rapid evolution, and fragmentation of tools 
•  CUDA / DX / OpenCL / C++ AMP, vectorizing compilers 
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Intrinsics 
/ Auto-
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Desktop GFlops (8-core 3.5GHz Sandy Bridge + AMD 6950) 

4 

Straight 
C++ 

OpenGL /   
OpenCL /  
C++ AMP 

TBB 
GCD 
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