Durability Semantics for
Lock-based Multithreaded

Programs

Dhruva R. Chakrabarti, Hans-J. Boehm
Hewlett-Packard Laboratories

© Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice

Do we need a separate durable data

representation?

« Conventional durability techniques
— Separate object and persistent formats
— Translation code
— Programmability and performance issues

* In-memory durability

— Enabled by non-volatile memory or NVRAM
(such as memristors, PCM, etc.)

— In-memory objects are durable throughout

— Byte-addressability simplifies programmability

— Low load/store latencies offer high
performance

2 © Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

HotPar'13

objects

Serialize -
_ > .
File or
€<—— | Database
Deserialize

CPU

v

CACHES

/

v

v

DRAM

NVRAM

Programming Model

Use persistent regions (PR) instead of flat files

pr = find_or _create persistent region(name);
PR persistent_data = get root pointer(pr);
if (persistent_data) {
/l restart code

Root
}

else {
/[initialize persistent_data

Data not in a PR is considered transient :
/] use persistent_data

3 © Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. @
HotPar'13

Motivating Observations

* Reuse durable data structures after process termination

» Reusable data structures must be consistent across failures
— Invariants must be preserved

» How are invariants identified in a lock-based multithreaded program?
— No explicit association between a shared datum and the protecting lock
— Lock acquires can be nested

T2

Time

4 © Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

HotPar'13

Contributions

» Consistency semantics for durable data at intermediate program points
— In spite of arbitrary lock nesting
— Largely unchanged code
— Relationship with transactional semantics

» Optimizations

* Initial idea of overheads

5 © Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

HotPar'13

Notion of Consistent Program Points

Unlocked program points are thread-consistent

« Critical sections indicators of consistent states

— If no locks are held, all data structures should be in a consistent state
» Some restrictions:

— Client provided locks

— Serial programs

6 © Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

HotPar'13

Notion of Failure-Atomic Update Units

Outermost Critical Sections (OCS) are failure-atomic

T g _' 68—

. A a— 1 a s

Time

|] :0CS L — — —] :Inner critical sections

7 © Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

HotPar'13

Notion of Durability-related Dependences among
OCSG!Scompleted OCS may depend on an incomplete OCS

« Cause: Isolation and durability boundaries may not match

 Effect:. The durable effects of a completed OCS may have to be
undone

- Happens On'YthQré‘%éF@?&ent and initially x=y=0

11 T2 0,
1: ... 1": lock(12)
2" lock(I1)
3" x=1
14" unlock(11)
: 01/hb/5’3---
11: lock(11¥ |
12y =x <— OCS-hb—
13: unlock(l1) @

If the program crashes, can the effects of o, be made durable when those of o, are not?
NO! y=1, x=0 is not a consistent state.

8 © Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. @
HotPar'13

OCS-hb relation may be cyclic

Inner critical sections can cause cyclic OCS-hb

r—aa T 68—

=N =

T a 8% a Y ’tlz

I L_—_1 L__J

Time

|] :0CS L — — —] :Inner critical sections

All effects in the involved OCSes must appear to be visible in persistent memory at the same time

9 © Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

HotPar'13

An Implementation Overview

« All lock operations and writes to persistent memory locations logged
» hb-relations between lock releases and acquires captured in the log
* Logs maintained in non-volatile memory

* Unnecessary log entries periodically pruned

« Some optimizations implemented

» Cache lines flushed at appropriate points

10 © Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

HotPar'13

Some Preliminary Experimental Results

* NVRAM-based programs 2-3 orders of magnitude faster than disk-based
ones
« But what's the overhead of adding durability to transient data structures?

TRuntime comparison of 2 durable applications with the transient version as the baseline

nvram: durable version
nvram-nf: durable version without

SIOWdOW_n StatIStIC§ cache line flushes
Apps (num_threads=4) (num_threads=4) #0OCSes: Total number of OCSes
nvram | nvram-nf | #0CSes | #store #logs encountered dynamically
S #stores: Total number of dynamic
Dedup 50% 33% 260K 900K 1.4M store operations in NVRAM
#logs: total number of log entries
Memcached 160% 60% 4M 22M 30M created in NVRAM

Dedup: A deduplication kernel from the PARSEC benchmark suite. The hashtable maintaining
unique key-value pairs of chunks of input stream is made durable.
Memcached: Starting with the original key-value cache implementation, the cache, LRU lists,

and the slab allocator information are made durable.

11 © Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

1 DRAM used to simulate NVRAM on a RedHat Linux Intel Xeon x86-64 machine.
g,
HotPar'13

Conclusions

* Presented a technique for identifying intermediate application-wide
consistent states in a lock-based program

* NVRAM enables an efficient implementation

12 © Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

HotPar'13

Backup

13 © Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

HotPar'13

Optimizations/Pitfalls

* Is log elision applicable to durable updates outside an OCS?

* s it mandatory to track every OCS-hb, specifically ones that involve
OCSes with updates to transient locations alone?

14 © Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

HotPar'13

Optimizing thread-consistent updates

Elide logqging outside an OCS, if possible

10
al: lock(l1
a2: t=read
a3: unlock(l1
4: if ()
5. Yy=X

15 © Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

HotPar'13

11

b11: lock(I2
b12: p=q
b13: unlock(I2)

14: x =1
c15: lock(I1)
c16: ready = 1
c17: unlock(I1)

d21:
d22:
d23:
d24:
d25:
d26:

12
lock(13)
lock(12)
q=1
unlock(12)
m =1
unlock(13)

OCS level hb-relations

d

d

b

C

e

a
Elide logging of line 14 since OCS ‘b’ will not be undone.
Elide logging of line 5 since OCS ‘a’ will not be undone.

7

Every hb-relation must be captured

X, Y, m, p, and q are shared and persistent.
tis local, ready is shared. Both are transient.
Initially x =y =m=p=q=t=ready=0

10 11 12
al: lock(I1 b11: lock(I2) d21: lock(I3)
a2.t=rea b12: p=q d22: lock(12)
a3: unlock(I1 b13: unlock(I2) d23:q =1
4: if () 14: x = 1 d24: unlock(12)
5. y=X c15: lock(l1) d25: m =1

c16: ready = 1 d26: ...
c17: unlock(l1)

OCS level hb-relations

a

If OCS d fails but all hb-relations are captured,
all values are reset to a consistent state

If OCS d fails but all hb-relations are not captured,

y = 1 while others are 0, an inconsistent state

16 © Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

HotPar'13

