
© Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.
HotPar'13

Durability Semantics for
Lock-based Multithreaded
Programs
Dhruva R. Chakrabarti, Hans-J. Boehm
Hewlett-Packard Laboratories

© Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.
HotPar'13

2

Do we need a separate durable data
representation?
• Conventional durability techniques

–  Separate object and persistent formats
–  Translation code
–  Programmability and performance issues

•  In-memory durability
–  Enabled by non-volatile memory or NVRAM

(such as memristors, PCM, etc.)
–  In-memory objects are durable throughout
–  Byte-addressability simplifies programmability
–  Low load/store latencies offer high

performance

In-
memor

y
objects

File or
Database

Serialize

Deserialize

CPU

CACHES

DRAM NVRAM

© Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.
HotPar'13

3

Programming Model

pr = find_or_create_persistent_region(name);
persistent_data = get_root_pointer(pr);
if (persistent_data) {

 // restart code
}
else {

 // initialize persistent_data
}
// use persistent_data

Use persistent regions (PR) instead of flat files

PR

Root

Data not in a PR is considered transient

© Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.
HotPar'13

4

Motivating Observations

• Reuse durable data structures after process termination
• Reusable data structures must be consistent across failures

–  Invariants must be preserved
• How are invariants identified in a lock-based multithreaded program?

–  No explicit association between a shared datum and the protecting lock
–  Lock acquires can be nested

Time

T2

T1 C1 C2 C3 C4

C5 C6 C7

© Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.
HotPar'13

5

Contributions

• Consistency semantics for durable data at intermediate program points
–  In spite of arbitrary lock nesting
–  Largely unchanged code
–  Relationship with transactional semantics

• Optimizations
•  Initial idea of overheads

© Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.
HotPar'13

6

Notion of Consistent Program Points

Unlocked program points are thread-consistent

• Critical sections indicators of consistent states

–  If no locks are held, all data structures should be in a consistent state
• Some restrictions:

–  Client provided locks
–  Serial programs

© Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.
HotPar'13

7

Notion of Failure-Atomic Update Units

Outermost Critical Sections (OCS) are failure-atomic

Time

T2

T1

: OCS : Inner critical sections

© Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.
HotPar'13

8

Notion of Durability-related Dependences among
OCSes A completed OCS may depend on an incomplete OCS

• Cause: Isolation and durability boundaries may not match
• Effect: The durable effects of a completed OCS may have to be

undone
–  Happens only with nesting x, y are persistent and initially x=y=0

 T1 T2
1: … 1': lock(l2)

 . 2': lock(l1)
 . 3': x = 1
 . 4': unlock(l1)
 . 5’: …

11: lock(l1)
12: y = x
13: unlock(l1)

o1

o2

If the program crashes, can the effects of o1 be made durable when those of o2 are not?
NO! y=1, x=0 is not a consistent state.

hb

OCS-hb

© Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.
HotPar'13

9

OCS-hb relation may be cyclic

Time

T2

T1

All effects in the involved OCSes must appear to be visible in persistent memory at the same time

Inner critical sections can cause cyclic OCS-hb

: OCS : Inner critical sections

© Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.
HotPar'13

10

An Implementation Overview

• All lock operations and writes to persistent memory locations logged
•  hb-relations between lock releases and acquires captured in the log
•  Logs maintained in non-volatile memory
• Unnecessary log entries periodically pruned
• Some optimizations implemented
• Cache lines flushed at appropriate points

© Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.
HotPar'13

11

Some Preliminary Experimental Results

• NVRAM-based programs 2-3 orders of magnitude faster than disk-based
ones

• But what’s the overhead of adding durability to transient data structures?

Apps

Slowdown
(num_threads=4)

Statistics
(num_threads=4)

nvram nvram-nf #OCSes #store
s

#logs

Dedup 50% 33% 260K 900K 1.4M

Memcached 160% 60% 4M 22M 30M

1Runtime comparison of 2 durable applications with the transient version as the baseline

nvram: durable version
nvram-nf: durable version without
cache line flushes
#OCSes: Total number of OCSes
encountered dynamically
#stores: Total number of dynamic
store operations in NVRAM
#logs: total number of log entries
created in NVRAM

Dedup: A deduplication kernel from the PARSEC benchmark suite. The hashtable maintaining
unique key-value pairs of chunks of input stream is made durable.
Memcached: Starting with the original key-value cache implementation, the cache, LRU lists,
and the slab allocator information are made durable.

1 DRAM used to simulate NVRAM on a RedHat Linux Intel Xeon x86-64 machine.

© Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.
HotPar'13

12

Conclusions

• Presented a technique for identifying intermediate application-wide
consistent states in a lock-based program

• NVRAM enables an efficient implementation

© Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.
HotPar'13

13

Backup

© Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.
HotPar'13

14

Optimizations/Pitfalls

•  Is log elision applicable to durable updates outside an OCS?
•  Is it mandatory to track every OCS-hb, specifically ones that involve

OCSes with updates to transient locations alone?

© Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.
HotPar'13

15

Optimizing thread-consistent updates

 T0
a1: lock(l1)
a2: t = ready
a3: unlock(l1)
 4: if (t)
 5: y = x

 T1
b11: lock(l2)
b12: p = q
b13: unlock(l2)
 14: x = 1
c15: lock(l1)
c16: ready = 1
c17: unlock(l1)

 T2
d21: lock(l3)
d22: lock(l2)
d23: q = 1
d24: unlock(l2)
d25: m = 1
d26: unlock(l3)

d

b

c

a

OCS level hb-relations

Elide logging of line 14 since OCS ‘b’ will not be undone.
Elide logging of line 5 since OCS ‘a’ will not be undone.

Elide logging outside an OCS, if possible

© Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.
HotPar'13

16

Every hb-relation must be captured

x, y, m, p, and q are shared and persistent.
t is local, ready is shared. Both are transient.
Initially x = y = m = p = q = t = ready = 0

 T0
a1: lock(l1)
a2: t = ready
a3: unlock(l1)
 4: if (t)
 5: y = x

 T1
b11: lock(l2)
b12: p = q
b13: unlock(l2)
 14: x = 1
c15: lock(l1)
c16: ready = 1
c17: unlock(l1)

 T2
d21: lock(l3)
d22: lock(l2)
d23: q = 1
d24: unlock(l2)
d25: m = 1
d26: …

d

b

c

a

OCS level hb-relations

If OCS d fails but all hb-relations are not captured,
y = 1 while others are 0, an inconsistent state

If OCS d fails but all hb-relations are captured,
all values are reset to a consistent state

