

Uncertainty in Aggregate Metrics from Sampled Distributed Traces

2012 Workshop on Managing Systems Automatically and Dynamically

Nate Coehlo, Arif Merchant, Murray Stokely

Overview

- Sometimes we lack a system measurement:
 - High measurement data volume.
 - Lack of perfect foresight / difficult implementation.

- Dapper: 'always-on' system for sampled distributed tracing.
- Can estimate metrics by aggregating Dapper samples.
- How to estimate the uncertainty in the aggregates?

Dapper Sampling 1: Overview

- Simple Case: Only complete traces returned, and all four RPCs have the same sampling probability.
- Complication 1: Developers may want more detailed information on middle-tier C, so they can configure this to make rpc3 and rpc4 get sampled with higher probability. This is s, the server sampling probability.
- Complication 2: Backend E might be under pressure so that collection needs to be further downsampled. This is d, the downsampling probability.
- For every RPC that gets returned, we also know the the sampling probability **p=s*d**.
- Doing weighted sums by 1/p will give unbiased estimates.

* Figure from Sigelman et al, "Dapper, a Large-Scale Distributed Systems Tracing Infrastructure"

Example: Changes in Disk Accesses to certain data partitions

Both data partitions saw a large one day increase in the estimated number of disk seeks. When should we flag the difference?

Hypothesis Testing Approach

 $E_t = \textit{Estimated} \# \textit{of disk accesses on day t}$

 $D_t = \mathit{True} \# \mathit{of} \mathit{disk} \mathit{accesses} \mathit{on} \mathit{day} \mathit{t}$

Some natural variation exists, so our null hypothesis is:

$$H_0: \ \ D_{t+1} < 1.1 \ D_t$$

We will reject the null hypothesis for large values of:

$$T = E_{t+1} - 1.1 E_t$$

A z-score is given if we divide T by its standard error.

Based on the normal approximation, rejecting this one-sided null when z-score > 1.64 ensures a false positive rate of less than 5%.

Hypothesis Testing Approach

Flag when z-score > 1.64: red points above the red line

Data Partition A:

- Change was significant, and first flagged the day before largest increase
- Persistent change after initial spike.

Data Partition B:

- Change was not significant.
- Change did not persist after the initial spike.

Application: Bin Packing User and Application Data

- Complex optimization, taking into account many data sources and satisfying many constraints.
- The resulting number of cross-datacenter reads is one optimization criterion.
- Full logging of all (user, application) pairs would be prohibitively expensive.
- Resulting Cross-Datacenter reads can be approximated from Dapper samples.

RPC
$$x = (0, 1, ..., 1, ..., 0)$$
Component j of x will equal 1 if RPC would have caused a cross-datacenter

The weighted aggregation over x estimates the cross-datacenter reads for each of the of the potential bin packing strategies. When can we say that one strategy is significantly better than another in terms of cross-datacenter reads?

read in the bin-packing strategy i

Two Example Strategies

- Problem: Repack users/data in datacenters to minimize cross datacenter reads.
- Basic Strategy (First fit):
 - Fill datacenters with users/data in alphabetical order.

- Crossterm Strategy (Greedy):
 - Estimate cross user reads from training data.
 - Put pairs of users with most cross-reads in same datacenter.
- Does one consistently work better?

- Normalized difference (basic-crossterm) by the overall average of basic.
- Confidence intervals above zero means that crossterm strategy is better every day.

Dapper Sampling 2: Details

The Variance depends on the JOINT sampling probability for any two RPCs

- For every RPC that gets returned, we also know the the sampling probability p=s*d, which is the product of the server sampling probability and the downsampling probability.
- All RPCs in a trace share one ID, which is a uniformly generated 64-bit integer.
- The trace ID and its hash can be mapped to a
 point (s', d') on the unit square, can be modeled
 as a uniform draw on that square, and an RPC is
 returned if s' < s and d' < d.
- For RPCs in two different traces, the joint sampling probability is:

$$p_{12}=s_1d_1s_2d_2$$

 For RPCs in the same trace, the joint sampling probability is:

$$p_{12} = min(s_1, s_2) \ * \ min(d_1, d_2)$$

The Math Slide: Covariance Estimate Algorithm

- GetSigmaHat returns an unbiased estimate of the covariance matrix of aggregated Dapper samples.
- Using the normal approximation, we can compute zscores from the variance estimates.

Notes on the Algorithm

- The resulting covariance estimate is the sum of contributions over each trace.
- A valid (optional) step is to first aggregate contributions corresponding to the same values of (ID, s, d).
- While the number of RPCs within a trace may be very large, the number of distinct (s, d) values across all traces is small (< 20), so the quadratic term in Algorithm 2 is small.
- Given M distinct (s,d) combinations, and a J dimensional estimate with M and J fixed; the algorithm scales with N RPCs and T total traces as:

```
O N * c_1 + T * c_2
```

Algorithm 1 GetSigmaHat

```
M \leftarrow a J \times J matrix of zeros.

for all ID \in S do

M+=ProcessSingleTrace(ID)

end for

return M
```

Algorithm 2 ProcessSingleTrace

Given a collection of (s_i, d_i, x_i) corresponding to a given ID, aggregate data over the unique tuples of (s,d) to get (s_k, d_k, \mathbf{y}_k) where $\mathbf{y}_k = \sum_{\{j | (s_j, d_j) = (s_k, d_k)\}} \mathbf{x}_j$ and we let K_t be the number of distinct tuples resulting form this aggregation.

 $M \leftarrow a J \times J$ matrix of zeros.

for all
$$k \in 1$$
: K_t do

for all $k' \in 1$: K_t do

 $w = \frac{1 - \max(s_k, s_{k'}) * \max(d_k, d_{k'})}{s_k s_{k'} d_k d_{k'}}$
 $M + = w * (y_k \otimes y_{k'})$

end for

end for

return M

Algorithm Scalability

- Compute joint probabilities for pairs of RPCs
- Compute variance in estimates from joint probabilities
- Complexity: Linear with number of traces
- Quadratic in number of (server sampling,down-sampling) probabilities, but that is usually small

Conclusions

- Aggregated Dapper samples are useful when direct measurements are not available.
- A detailed understanding of the sampling mechanisms is required to estimate the variance of the estimate.
- Using variance estimates allows us to reliably compare different aggregates, e.g.:
 - When a detected change in IO rates is real (compare rates for different days)
 - Select bin-packing strategies (compare cross-datacenter read estimates)