who wears me?
bioimpedance as a passive biometric

cory.cornelius@dartmouth.edu
w/ jacob.sorber, ronald.peterson, joseph.skinner, ryan.halter, david.kotz

Tuesday, August 14, 12


mailto:cory.cornelius@dartmouth.edu
mailto:cory.cornelius@dartmouth.edu

wearable sensing systems




the problem
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..activate on deployment,
in a plug-n-play manner,
with minimal (ideally none)
initialization procedures.

— Venkatasubramanian et al.




biometrics

physiological behavioral
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passive biometrics

* universal
- do most people have it?
* unique
- is it unique for most people?

* permanence
- is it stable over time?

e unobtrusively measurable
- can it be easily measured?

e difficult to circumvent
- how difficult it is to fool?
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bioimpedance
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an unwearable device
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measuring bioimpedance
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feature extraction
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feature extraction
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feature extraction
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enrollment & recognition

enroliment recognition
- collect a set of training - given a test feature vector
feature vectors for some collected from a subject

cohort of subjects - .
- use the classifier to predict

- use these training feature which subject the test
vectors to learn a multi- feature vector was collected
class classifier, where each from

class corresponds to a

particular subject - we ran a leave-one-

bioimpedance-out cross-
- we empirically validation to determine the
determined a naive bayes accuracy of our learned
classifier worked best classifier
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parameters, dataset, metrics

parameters

cohort size: 2, 3,4, 5, 46
bi-polar patterns: 1515, 2626,
3737, 4848

tetra-polar patterns: 1526,
1537, 1548, 2637, 2648, 2651,
3748, 3751, 3762, 4851, 4862,
and 4873

dataset

46 subjects (22 o7, 24 R)

21 years old (o = 3 years, > 18)
5 measurements for each
pattern

3680 total measurements

metrics
balanced accuracy

prediction

(TA+TR) /(TA+ TR + FA + FR)

fa

fa

se accept rate

A / (FA + TR)

se reject rate

accept

reject

FR / (FR + TA)

ground truth

genuine

impostor

true accept
(TA)

false accept
(FA)

false reject
(FR)

true reject
(TR)
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bi-polar experiments
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tetra-polar experiments
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circumference experiment

~ histogram of wrist circumferences

6 o
o 2 B Female
c
> 3 | Male I
O
O 2 - -
7 - - -
o — | | | | | |
® p B O @ » o I I ®» ® © © 3
Ul o O u o o U o o U o
Wrist Circumference (cm)
100 % ~measurement error (mm)
20 % 0 N 10 EEEm
60% —
40 %
20% —
0%
2 3 4 5 46 2 3 4 5 46 2 3 4 5 46
Balanced Accuracy False Reject Rate False Accept Rate

Cohort Size

Tuesday, August 14, 12



combined experiment
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summary

we collected wrist circumference
and bioimpedance from 46
subjects

we were able to predict a subject
with ~“85% accuracy using a single
vi-polar electrode pattern

noosted to “90% when combined
with wrist circumference as a
feature

we are currently developing a
wearable prototype to collect
longitudinal data
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