who wears me? bioimpedance as a passive biometric

cory.cornelius@dartmouth.edu

w/jacob.sorber, ronald.peterson, joseph.skinner, ryan.halter, david.kotz

wearable sensing systems

the problem

...activate on deployment, in a plug-n-play manner, with minimal (ideally none) initialization procedures.

Venkatasubramanian et al.

biometrics

physiological

behavioral

- universal
 - do most people have it?

- universal
 - do most people have it?
- unique
 - is it unique for most people?

- universal
 - do most people have it?
- unique
 - is it unique for most people?
- permanence
 - is it stable over time?

- universal
 - do most people have it?
- unique
 - is it unique for most people?
- permanence
 - is it stable over time?
- unobtrusively measurable
 - can it be easily measured?

- universal
 - do most people have it?
- unique
 - is it unique for most people?
- permanence
 - is it stable over time?
- unobtrusively measurable
 - can it be easily measured?
- difficult to circumvent
 - how difficult it is to fool?

bioimpedance

bi-polar

tetra-polar

an unwearable device

measuring bioimpedance

feature extraction

feature extraction

feature extraction

enrollment & recognition

enrollment

- collect a set of training
 feature vectors for some
 cohort of subjects
- use these training feature vectors to learn a multiclass classifier, where each class corresponds to a particular subject
- we empirically determined a naive bayes classifier worked best

recognition

- given a test feature vector
 collected from a subject
- use the classifier to predict which subject the test feature vector was collected from
- we ran a leave-one-bioimpedance-out cross-validation to determine the accuracy of our learned classifier

parameters, dataset, metrics

parameters

- cohort size: 2, 3, 4, 5, 46
- bi-polar patterns: 1515, 2626, 3737, 4848
- tetra-polar patterns: 1526, 1537, 1548, 2637, 2648, 2651, - false reject rate 3748, 3751, 3762, 4851, 4862, **–** FR / (FR + TA) and 4873

dataset

- 46 subjects (22 $\sqrt[3]{24}$ $\stackrel{?}{=}$)
- 21 years old (σ = 3 years, ≥ 18)
- 5 measurements for each pattern
- 3680 total measurements

metrics

- balanced accuracy
 - (TA + TR) / (TA + TR + FA + FR)
- false accept rate
 - FA / (FA + TR)

ground truth

prediction		genuine	impostor
	accept	true accept (TA)	false accept (FA)
	reject	false reject (FR)	true reject (TR)

bi-polar experiments

tetra-polar experiments

circumference experiment

combined experiment

summary

- we collected wrist circumference and bioimpedance from 46 subjects
- we were able to predict a subject with ~85% accuracy using a single bi-polar electrode pattern
- boosted to ~90% when combined with wrist circumference as a feature
- we are currently developing a wearable prototype to collect longitudinal data

who wears me?

bioimpedance as a passive biometric

cory.cornelius@dartmouth.edu

w/jacob.sorber, ronald.peterson, joseph.skinner, ryan.halter, david.kotz