
Effective Entropy for Memory
Randomization Defenses

William Herlands, Thomas Hobson, Paula Donovan

7th Workshop on Cyber Security Experimentation and Test

18 August 2014

This work is sponsored by Assistant Secretary of Defense for Research & Engineering under Air Force
Contract FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of
the author and are not necessarily endorsed by the United States Government.

Effective Entropy - 2
TH 8/18/14

User Space Memory Randomization

•  User-space memory randomization defenses protect against
memory-corruption attacks
–  Attackers require knowledge of the layout of memory
–  Defenses randomize layout

•  E.g. Address Space Layout Randomization (ASLR)

Image Reference: Didier Stevens, yaisc.com

Effective Entropy - 3
TH 8/18/14

We developed Effective Entropy, a metric which is quantitative,
comparable, and indicative of adversary workload

Metric Requirements

•  Current metrics use exploits or entropy to evaluate
randomization technologies

Entropy

Pro
•  Quantitative, information theoretic
•  Easy to compare

Con
•  Does not consider threat models
•  Not holistic

Exploits

Pro
•  “Real life,” holistic test against

adversary technology

Con
•  Anecdotal
•  Not comparable
•  Biased towards existing exploits

Effective Entropy - 4
TH 8/18/14

Slide reference: Johnson, K., Miller, M. Microsoft Security Engineering Center. Exploit Mitigation Improvements in Windows 8. Black Hat USA 2012

Effective Entropy - 5
TH 8/18/14

We developed Effective Entropy, a metric which is quantitative,
comparable, and indicative of adversary workload

Metric Requirements

•  Current metrics use exploits or entropy to evaluate
randomization technologies

Entropy

Pro
•  Quantitative, information theoretic
•  Easy to compare

Con
•  Does not consider threat models
•  Not holistic

Exploits

Pro
•  “Real life,” holistic test against

adversary technology

Con
•  Anecdotal
•  Not comparable
•  Biased towards existing exploits

Effective Entropy - 6
TH 8/18/14

Outline

•  Background on Memory Randomization

•  Effective Entropy

•  Evaluation

Effective Entropy - 7
TH 8/18/14

Linux 32-bit

Program Image

Heap

Stack

VDSO

MMAP

User Memory Layout

•  Multiple sections required to run
a program:
–  Code to run (“Program Image”)
–  Variables used in execution

(“Heap” and “Stack”)
–  Kernel functions (“VDSO”)
–  Libraries (“MMAP”)

MMAP: Memory Map
VDSO: Virtual Dynamically-linked Shared Objects

Effective Entropy - 8
TH 8/18/14

User Memory Layout

•  In a static layout a variety of
attacks are possible since an
adversary can trivially know
the location of objects in
memory

0x0000
0x0001
0x0002
0x0003

.

.

.

.

Linux 32-bit

Program Image

Heap

Stack

VDSO

MMAP

PWND!

Effective Entropy - 9
TH 8/18/14

Entropy in User Memory Layout

•  Memory randomization
techniques randomize
sections’ location in memory
–  Base address randomization
–  E.g. Ubuntu 32-bit provides

256 (28) possible MMAP
locations

Linux 32-bit

Program Image

Heap

Stack

VDSO

MMAP

0x0000
0x0001
0x0002
0x0003

.

.

.

Library
location

Effective Entropy - 10
TH 8/18/14

Entropy in User Memory Layout

•  Entropy is a means of
measuring randomness
–  E.g. MMAP base can take 28

values with equal probability
so it has 8 bits of entropy

–  Standard calculation of
entropy measures total
uncertainty of a variable in bits

Linux 32-bit

Program Image

Heap

Stack

VDSO

MMAP 8 Bits

Effective Entropy - 11
TH 8/18/14

Static Address Space Layout
Randomization (ASLR)

•  Static (non-PIE) ASLR
randomizes base addresses of
memory sections
–  Heap, stack, VDSO, and MMAP

randomized independently
–  Program image not randomized

•  Implemented in most modern
operating systems
–  Windows, OS X, Linux,

OpenBSD

19 Bits

13 Bits

0 Bits

8 Bits

8 Bits

Static ASLR

Program Image

Heap

Stack

VDSO

MMAP

Effective Entropy - 12
TH 8/18/14

PIE ASLR

19 Bits

13 Bits

8 Bits

8 Bits

8 Bits

PIE ASLR

Program Image

Heap

Stack

VDSO

MMAP

•  Position Independent
Executable (PIE) ASLR
randomizes all base
addresses of memory
–  Heap, stack, VDSO, MMAP, and

program image randomized
independently

•  Increasingly prevalent
–  Compiler option in GCC
–  Default in OpenBSD 5.3

Effective Entropy - 13
TH 8/18/14

Fine Grain Randomization

19 Bits

13 Bits

0 Bits

8 Bits

8 Bits
per block

Fine Grain

Program Image

Heap

Stack

VDSO

MMAP

•  Fine grain randomization
–  Randomize smaller blocks, not

only section base addresses
–  E.g. Independent library

randomization
–  “Address Space Layout

Permutation (ASLP): Towards
Fine-Grained Randomization
of Commodity Software”, Kil et
al.

Effective Entropy - 14
TH 8/18/14

Outline

•  Background on Memory Randomization

•  Effective Entropy

•  Evaluation

Effective Entropy - 15
TH 8/18/14

Connections in User Memory Layout

•  Not so simple
•  Interconnectedness

–  Control flow instructions
–  Pointers

19 Bits

13 Bits

0 Bits

8 Bits

8 Bits

Heap

Stack

VDSO

MMAP

Linux 32-bit
Base Entropy

Program Image

Effective Entropy - 16
TH 8/18/14

8 Bits

Connections in User Memory Layout

13 Bits

0 Bits

Heap

Stack

VDSO

MMAP

Linux 32-bit
Base Entropy

Program Image
Code

data
 exec_ptr

0. Attacker uses buffer overflow to write
the address of ‘pop %ecx, jmp *%ecx’
gadget into ret addr, followed by the
address of exec_ptr

19 Bits
%esp
%esp

1

X - Attacker supplied values

jmp *%ecx
pop %ecx

&exec_ptrX

ret_addrX

exec()

2

1. Function attempts to return, control
redirected to gadget in Program Image

2. Pops &exec_ptr from stack and jumps to
value at that address (exec function in MMAP)

8 Bits
0 Bits

8 Bits

Effective Entropy - 17
TH 8/18/14

Connections in User Memory Layout

? Bits

? Bits

0 Bits

? Bits

Heap

Stack

VDSO

MMAP

Linux 32-bit
Base Entropy

Program Image

19 Bits

13 Bits

8 Bits

? Bits 8 Bits

 Absolute connections
 Read-only pointers
 Direct jumps

 Dynamic connections
 Writable pointers
 Indirect branches

Effective Entropy - 18
TH 8/18/14

Connections in User Memory Layout

? Bits

? Bits

0 Bits

? Bits

Heap

Stack

VDSO

MMAP

Linux 32-bit
Base Entropy

Program Image

19 Bits

 Absolute connections
 Read-only pointers
 Direct jumps

 Dynamic connections
 Writable pointers
 Indirect branches

13 Bits

8 Bits

? Bits 8 Bits

 Difficult to determine,
requires runtime analysis

Effective Entropy - 19
TH 8/18/14

Identifying Dynamic Pointers

Examine writeable
memory at every

control flow statement

Eliminate inconsistencies

Identify dynamic pointers

Run deterministic execution path twice:

Heap

Stack

VDSO

MMAP

Linux 32-bit
Base Entropy

Program Image

Effective Entropy - 20
TH 8/18/14

Effective Entropy (EffH)

Effective Entropy - 21
TH 8/18/14

Measuring Randomization Technologies

•  EffH is a property of a randomization technology and threat
model

•  On any particular platform, sufficiently large programs exhibit
similar memory interconnections
–  E.g. Global Offset Table ! Library functions

•  Any non-degenerate execution of a program is representative of
all non-degenerate executions with respect to memory usage
–  Connections are drawn from same distribution

Effective Entropy - 22
TH 8/18/14

Outline

•  Background on Memory Randomization

•  Effective Entropy

•  Evaluation

Effective Entropy - 23
TH 8/18/14

Experiment Overview

•  Goals:
–  Evaluate current and emerging security technologies against

realistic threat models
–  Assess utility of the EffH metric

 Security Technologies
Considered

Image Reference: Defense Science Board, Jan 2013: Resilient Military Systems and the Advanced Cyber Threat

•  Static ASLR

•  PIE ASLR

•  Independent Library
Randomization
–  Simulation of fine

grain randomization
technique

Threat Models

•  Consider viable
adversaries at
multiple tiers of
sophistication and
resources

Effective Entropy - 24
TH 8/18/14

Threat Model

•  Moderate Adversary
–  Control flow hijacking vulnerability
–  Modern exploitation methods including Return

Oriented Programming (ROP)

•  Memory Disclosure Adversary
–  Control flow hijacking vulnerability
–  Modern exploitation methods including ROP
–  Memory disclosure vulnerability that reveals location

of one memory section

Return Oriented
Programming

•  Use snippets of
executable code called
“ROP gadgets”

•  Combine gadgets to
create a custom exploit

Effective Entropy - 25
TH 8/18/14

Moderate Adversary - ASLR

0

4

8

12

16

20

PIE ASLR

Entropy

EffH

Static ASLR provides zero bits of EffH to Moderate Adversary

0

4

8

12

16

20

B
its

Static ASLR

Effective Entropy - 26
TH 8/18/14

Memory Disclosure Adversary – PIE ASLR

PIE ASLR provides zero bits of EffH to Adversary disclosing Program Image

0

4

8

12

16

20

PIE ASLR

Entropy

EffH

Effective Entropy - 27
TH 8/18/14

0

2

4

6

8

10

12

14

16

18

20

B
its

Independent Library Randomization

Entropy

EffH

Memory Disclosure Adversary - Fine Grain

Fine Grain provides 8 bits of EffH for some but not all libraries

Individual Libraries Program, Stack,
Heap, VDSO

Effective Entropy - 28
TH 8/18/14

Memory Disclosure Adversary - Fine Grain

1

100

10,000

0
1
2
3
4
5
6
7
8
9

10

RO
P	

G
ad

ge
ts
	

Bi
ts
	

Executable libraries

Independent Library Randomization Entropy
EffH
ROP Gadgets

Easily available with 0 bits EffH Difficult with 8
bits EffH

Protecting only some libraries does not mitigate attacks

Effective Entropy - 29
TH 8/18/14

Memory Disclosure Adversary - Fine Grain

1

10

100

1000

0
1
2
3
4
5
6
7
8
9

10

Sy
st
em

	
 C
al
ls
	

Bi
ts
	
 	

Executable libraries

Independent Library Randomization

Entropy
EffH
System Calls

Easily available with 0 bits EffH Difficult with 8
bits EffH

Protecting only some libraries does not mitigate attacks

Effective Entropy - 30
TH 8/18/14

Conclusions on Memory Randomization

•  Static ASLR does not provide effective defense against
adversaries

•  PIE ASLR and independent library randomization improve EffH
•  Sophisticated adversaries can overcome more advanced

randomization techniques
–  Memory disclosure adversary can overcome PIE ASLR and

independent library randomization

•  Minimum entropy often more important than mean or max

Effective Entropy - 31
TH 8/18/14

Summary

•  Effective Entropy metric for memory randomization security
–  Quantitative
–  Comparable between techniques
–  Provides insight into adversary difficulty

•  Fundamental weaknesses in randomization techniques

•  Raise minimum entropy and limit connectivity

