
Build It Break It Fix It
Andrew Ruef, Michael Hicks, Dave Levin, James
Parker, Atif Memon, Jandelyn Plane

What’s the motivation?

¡ What goes into secure software
development?
¡ How could we measure and

contrast different styles/languages?

¡ How do we teach people to write
secure code?
¡ What exercise will let people

observe both building and
breaking?

What’s our idea?
¡ A contest where contestants
¡  Build some secure software according to a specification
¡  Break the software written by other contestants

¡  Fix the bugs found in their software by other

¡ Organizers provide the specification

¡ Spread the contest over three weekends

¡ Each phase takes one weekend

¡ Announce two winners, one for best software, one
for most bugs found

Challenge specifications
¡ Needs to be at least a little fun

¡  Have high and low level security properties
¡  Writing in Java or Python should not win by default

¡  Judge implementations on both correctness and
performance

¡ Capable of unambiguously testing features

¡  Should be somewhat complicated, but doable in
72 hours

Fall 2014, alarm system
¡ Two programs, logappend, logread,

manipulate a secure log file to either
add events or query events

¡ Both programs authenticate to each
other via a single shared symmetric key

¡ Programs that run faster are better

¡ Smaller log file size is better

Three different types of bugs
¡ Correctness – The program didn’t meet some

part of the specification, or crashes

¡  Integrity – The log can be modified to attest to a
false fact

¡ Confidentiality – The log can be analyzed to
determine a protected fact

¡ We can automatically judge correctness and
integrity bugs

¡  Integrity, confidentiality, and a correctness bug
that produces a crash are counted as exploits

Infrastructure
¡ This is still a hacking competition, it would

be nice to not be compromised by our
contestants

¡ Interface with contestants
¡ A Haskell webapp

¡ Run contestant code
¡ An EC2 backend to run every test in its own

container

What were the results?
¡ We ran the contest over September

¡ Out of 90 registered teams with over 180
registered individuals, we had
¡  20 teams attempt to submit something

¡  11 teams submit code that passed core tests

¡ Successful submissions in Go, Haskell,
Python, Java, C, and C++

¡ Some failed submissions in Ruby

Scores over time

Break-It round

0

5

10

15

20

25

30

35

40

21 Python 46 C 47 Python 57 Python 51 Go 19 Haskell 35 Python 67 Java 68 C 69 Python 78 Java

Correctness vs Exploits

Correctness Exploits

Overall winners

¡ First place build-it languages
¡ Python
¡ Haskell

¡ First place break-it team wrote
in Go (and was third in build-it)

Bug finding strategies

¡ First place break-it winner did
everything with manual auditing

¡ Second place used some fuzzing

¡ One team reported repurposing
testing infrastructure they used
during build-it

What do we think about it?
¡ Memory safety helped but was not

sufficient
¡  This is an important property for the competition

¡ Strong static typing helped but was not
enough
¡  Python still wound up beating Haskell and Go

¡ There might be some interesting
properties in the programs we already
have

Conclusion

¡ Our contestants had fun and
learned about security

¡ We measured peoples ability to
both find bugs and write code

¡ We amplified one CTF problem into
N

¡ We’ll do it again

