
Next-Generation SecureDrop:
Protecting Journalists from Malware
Usenix Enigma, January 2020
Jennifer Helsby (@redshiftzero)
Lead Developer

@freedomofpress @securedrop

Today

1. Security Goals

2. Current architecture: The story so far

3. Challenges

4. Next generation architecture

5. What’s next

Current Team

Jen
Engineering

100% time on
SecureDrop

>= 50% time on
SecureDrop

>= 25% time on
SecureDrop

Kushal
Engineering

Kevin
Support,
Engineering

Allie
Engineering

John
Engineering

Rowen
Support

Conor
Engineering

Erik
Project Manager

Mickael
Engineering

Nina
UX

Harlo
Training

Olivia
Training

David
Training

A tale of a whistleblower

Trial by metadata

1. Prevent identification of journalistic sources.

2. Preserve confidentiality of source materials.

Security Goals

Trial by metadata

1. Prevent identification of journalistic sources.

2. Preserve confidentiality of source materials.

3. Prevent journalists from being hacked via

malicious submissions.

Security Goals

Security Goals

1. Prevent identification of journalistic sources.

2. Preserve confidentiality of source materials.

3. Prevent journalists from being hacked via
malicious submissions.

The story so far…

Some organizations that use SecureDrop for source communication

Current Architecture

Application server: Runs two Python web
applications (one for sources, one for
journalists) exposed via Tor Onion Services

Current Architecture

Current Architecture

Monitoring server: Runs a host-based IDS
(OSSEC) to monitor the application server and
send alerts to administrators

Current Architecture

Network firewall: pfSense used to isolate the
SecureDrop area of the network from the rest
of the news organization

Current Architecture

Documents stored encrypted to
the instance’s public key

Current Architecture

Journalists log on using TailsOS

Current Architecture

Journalists log on using TailsOS

Current Architecture

Current Architecture

Current Architecture

Current Architecture

Private key to decrypt documents
only in the air-gap environment.

Current Architecture

Accomplishments

1. Minimized the metadata trail between sources and

journalists (source traffic is routed through Tor).

2. No third parties to subpoena.

3. If an attacker gets code execution on the workstation

with source data, they need to jump the airgap to

exfiltrate any data.

Challenges with the airgap

Current Architecture

⓵ Cumbersome workflow:
Users due to time constraints
may circumvent the air-gap.

Current Architecture

⓶ USB drives are reused: To
reduce operational costs and
the burden, the same drive is
used to traverse the air-gap.

Current Architecture

⓷ No automatic updates: Significant
operational overhead to keeping an
air-gapped workstation up to date
with security patches.

Current Architecture

⓸ Malware specifically targeting the air-gap
environment: We have seen attacks get code
execution and rely on the fact that the
submission key is not isolated from the
environment in which documents are opened.

Take 2

Technical Goals

1. Ensure known vulnerabilities are patched.

2. Isolate the submission private key from potentially malicious submissions.

3. Isolate each source’s documents.

4. Recover from an attacker getting code execution in the VM used to open

submissions.

5. Provide defense in depth to defend against unknown vulnerabilities.

Design considerations

1. Needs to be maintainable by non-specialist IT staff at a news

organization.

2. Needs to be usable by journalists.

QubesOS: single-user desktop-based Xen distribution

 hardware

QubesOS: single-user desktop-based Xen distribution

 hardware

 xen

QubesOS: single-user desktop-based Xen distribution

 hardware

 xen

Dom0
(fedora)

QubesOS: single-user desktop-based Xen distribution

 hardware

 xen

Dom0
(fedora)

AppVM

QubesOS: single-user desktop-based Xen distribution

 hardware

 xen

Dom0
(fedora)

AppVM

TemplateVM (e.g. Debian)

QubesOS: single-user desktop-based Xen distribution

 hardware

 xen

Dom0
(fedora)

AppVM

TemplateVM (e.g. Debian) Fedora-based

QubesOS: single-user desktop-based Xen distribution

 hardware

 xen

Dom0
(fedora)

AppVM

TemplateVM (e.g. Debian) Fedora-based

Only /home, /usr/local, /rw/config will
persist through a reboot, otherwise AppVM
state is reset to the base TemplateVM

QubesOS: single-user desktop-based Xen distribution

 hardware

 xen

Dom0
(fedora)

AppVM

TemplateVM (e.g. Debian) Fedora-based

Upon shutdown, VM is destroyed.

Disposable VM

QubesOS: single-user desktop-based Xen distribution

 hardware

 xen

Dom0
(fedora)

TemplateVM (e.g. Debian)

AppVM Disposable VM
Non-networked

VM

 Fedora-based

QubesOS: single-user desktop-based Xen distribution

 hardware

 xen

Dom0
(fedora)

TemplateVM (e.g. Debian)

sy
s-

ne
t

AppVM Disposable VM
Non-networked

VM

 Fedora-based

Networking stack runs in sys-net

QubesOS: single-user desktop-based Xen distribution

 hardware

 xen

Dom0
(fedora)

TemplateVM (e.g. Debian)

sy
s-

ne
t

AppVM Disposable VM
Non-networked

VM

sy
s-

fir
ew

al
l

 Fedora-based

Apply firewall rules

QubesOS: single-user desktop-based Xen distribution

 hardware

 xen

Dom0
(fedora)

TemplateVM (e.g. Debian)

sy
s-

ne
t

AppVM Disposable VM
Non-networked

VM

sy
s-

fir
ew

al
l

sy
s-

us
b

 Fedora-based

USB controllers
by default
attached here

QubesOS: single-user desktop-based Xen distribution

 hardware

 xen

Dom0
(fedora)

TemplateVM (e.g. Debian)

sy
s-

ne
t

AppVM Disposable VM
Non-networked

VM

sy
s-

fir
ew

al
l

sy
s-

us
b

 Fedora-based

QubesOS: single-user desktop-based Xen distribution

QubesOS: single-user desktop-based Xen distribution

 hardware

 xen

Dom0
(fedora)

TemplateVM (e.g. Debian)

sy
s-

ne
t

AppVM Disposable VM
Non-networked

VM

sy
s-

fir
ew

al
l

sy
s-

us
b

 Fedora-based

InterVM communication via
qrexec, based on Xen’s vchan

Current Architecture

New Architecture

New Architecture
qrexec (interVM communication)

Legend

Disposable and non-networked
AppVM

Networked AppVM

Non-networked AppVM

System VM

New Architecture
qrexec (interVM communication)

Legend

Disposable and non-networked
AppVM

Networked AppVM

Non-networked AppVM

System VM

sys-net

sys-firewall

to internet

New Architecture
qrexec (interVM communication)

Legend

Disposable and non-networked
AppVM

Networked AppVM

Non-networked AppVM

System VM

sys-net

sys-firewall

tor

to internet

New Architecture
qrexec (interVM communication)

Legend

Disposable and non-networked
AppVM

Networked AppVM

Non-networked AppVM

System VM

sys-net

sys-firewall

tor

forwarder

to internet

Passes API requests/responses
from the SecureDrop server/to
the user

New Architecture
qrexec (interVM communication)

Legend

Disposable and non-networked
AppVM

Networked AppVM

Non-networked AppVM

System VM

sys-net

sys-firewall

tor

forwarder User GUI Application

to internet

Non-networked VM used
to run a chat-like interface

New Architecture
qrexec (interVM communication)

Legend

Disposable and non-networked
AppVM

Networked AppVM

Non-networked AppVM

System VM

sys-net

sys-firewall

tor

forwarder User GUI Application

Private key
material

to internet

New Architecture
qrexec (interVM communication)

Legend

Disposable and non-networked
AppVM

Networked AppVM

Non-networked AppVM

System VM

sys-net

sys-firewall

tor

forwarder User GUI Application

Private key
material

File opening VM

to internet

New Architecture
qrexec (interVM communication)

Legend

Disposable and non-networked
AppVM

Networked AppVM

Non-networked AppVM

System VM

sys-net

sys-firewall

tor

forwarder User GUI Application

Private key
material

File opening VM

to internet

Uses a hardened kernel (grsecurity) in order to
provide additional generalized exploit
mitigations for memory corruption vulns

Technical Goals
1. Ensure known vulnerabilities are patched.

• Autoupdates in all VMs (via updating the base templates).

2. Isolate the submission private key from potentially malicious documents.

• Submission private key is isolated in its own VM.

3. Isolate each source’s documents.

• Each document is isolated in its own VM.

4. Recover from an attacker getting code execution in the VM used to open submissions.

• Each file viewing VM is destroyed after shutdown.

5. Provide defense in depth against unknown vulnerabilities.

• Kernel hardening complicates exploitation of memory corruption-based vulnerabilities.

Journalist Perspective

Current status

1. Audit performed late 2018 of the

alpha version of this project (full audit

report PDF available on securedrop.org)

2. Beta test beginning in the next few

weeks with targeted news

organizations

http://securedrop.org

Takeaways

1. Journalists and their sources face growing challenges due to malware, phishing, and other

electronic threats.

2. User-friendly tools for working with potentially malicious documents are critical for journalists.

3. We have built one solution based on QubesOS, but more work in this area is needed.

Interested?

Check out our repositories: https://github.com/freedomofpress/securedrop-

workstation

Check out our bug bounty program: https://bugcrowd.com/freedomofpress

