


Quantifying 
Memory Unsafety 
and Reactions to It

Alex Gaynor, Fish in a Barrel



Fish in a Barrel, not a real company



John Podesta, 2016



Security keys





Memory Unsafety



Properties of memory unsafety

● Spatial:
○ Buffer overflow (heap or stack, read or write)

● Temporal:
○ Use-after-free
○ Use of uninitialized memory
○ Wild pointer dereference

● Type confusion



Languages

Memory safe:

● Rust

● Swift

● Python

● Java

● Go

● etc.

Memory unsafe:

● C

● C++

● Assembly



Case studies

● iOS 0-day (and n-day) exploits used against the Uighurs
● iOS and Android n-day exploits used against Tibetans
● iOS 0-day exploits used against Ahmed Mansoor
● WhatsApp 0-day exploit, with varied targets
● WannaCry
● HeartBleed



The stages of grief



Denial Symptoms:

“Programming in 
memory unsafe 
languages does not 
cause an increased rate 
of vulnerabilities.”



Denial: Data

● Chrome: 70% of high/critical vulnerabilities are memory unsafety

● Firefox: 72% of vulnerabilities in 2019 are memory unsafety

● 0days: 81% of in the wild 0days (P0 dataset) are memory unsafey

● Microsoft: 70% of all MSRC tracked vulnerabilities are memory unsafety

● Ubuntu: 65% of kernel CVEs in USNs in a 6-month sample are memory 

unsafety

● Android: More than 65% of high/critical vulnerabilities are memory unsafety

● macOS: 71.5% of Mojave CVEs are due to memory unsafety



The vulnerability venn diagram



Anger symptoms:

“Yes, code in memory 
unsafe languages can 
have bugs. But if you 
were a better 
programmer, you 
wouldn’t have this 
problem.”



Anger: Complex systems

How Complex Systems Fail

(Being a Short Treatise on the Nature of Failure; How Failure is Evaluated; 
How Failure is Attributed to Proximate Cause; and the Resulting New 
Understanding of Patient Safety)

-- https://how.complexsystems.fail/

https://how.complexsystems.fail/


Bargaining symptoms:

“Ok, yes, memory 
unsafety is a problem. 
But surely we can 
address it with static 
analysis and fuzzing and 
sandboxing and 
mitigations and 
red-teaming.”



Bargaining: Response

● Chrome: Tens of thousands of fuzzing cores
● iOS: Every single app is sandboxed
● Windows: Extensive exploit mitigations, including KCFG
● Chrome: Aggressive multi-process sandboxed design
● All: Millions of dollars spent on bug bounties



Depression symptoms:

“Memory unsafety is a 
problem… but oh my 
god we have a trillion 
lines of C/C++, we can 
never rewrite all of it, 
everything is hopeless.”



Depression: Work smarter, not harder

● Identify high leverage places
○ Code that runs with high privileges
○ Code that acts as a key part of a security guarantee
○ Code that has a large user-accessible attack surface



Acceptance symptoms:

Asking how, not if.



● Build a coalition who recognizes the gravity of this problem
● Find a memory safe language that’s a good fit for your domain
● Stop the bleeding: make it possible for new code bases in your 

organization to be memory safe
● Find your highest leverage attack surfaces in existing memory 

unsafe code and get to work!
● Use language as a factor when assessing the security of projects

A call to action



Proof that incremental migrations are 
possible

● Python Cryptographic Authority
● Rust-For-Linux
●
● Firefox
● Librsvg

Your project can be next!



Fin

Questions?
https://alexgaynor.net



Citations and references

1. https://security.googleblog.com/2019/05/new-research-how-effective-is-basic.html

2. https://alexgaynor.net/2018/dec/13/optimize-for-auditability/ 

3. https://googleprojectzero.blogspot.com/2019/08/a-very-deep-dive-into-ios-exploit.html

4. https://citizenlab.ca/2019/09/poison-carp-tibetan-groups-targeted-with-1-click-mobile-

exploits/

5. https://citizenlab.ca/2016/08/million-dollar-dissident-iphone-zero-day-nso-group-uae/

6. https://www.washingtonpost.com/technology/2019/05/14/whatsapp-patches-security-

flaw-that-allows-attackers-deliver-malware-through-calls/

7. https://en.wikipedia.org/wiki/WannaCry_ransomware_attack

8. https://www.chromium.org/Home/chromium-security/memory-safety

9. https://ldpreload.com/p/kernel-modules-in-rust-lssna2019.pdf

10. https://alexgaynor.net/2020/feb/18/scaling-software-development/

11. https://how.complexsystems.fail/

https://security.googleblog.com/2019/05/new-research-how-effective-is-basic.html
https://googleprojectzero.blogspot.com/2019/08/a-very-deep-dive-into-ios-exploit.html
https://citizenlab.ca/2019/09/poison-carp-tibetan-groups-targeted-with-1-click-mobile-exploits/
https://citizenlab.ca/2019/09/poison-carp-tibetan-groups-targeted-with-1-click-mobile-exploits/
https://citizenlab.ca/2016/08/million-dollar-dissident-iphone-zero-day-nso-group-uae/
https://www.washingtonpost.com/technology/2019/05/14/whatsapp-patches-security-flaw-that-allows-attackers-deliver-malware-through-calls/
https://www.washingtonpost.com/technology/2019/05/14/whatsapp-patches-security-flaw-that-allows-attackers-deliver-malware-through-calls/
https://en.wikipedia.org/wiki/WannaCry_ransomware_attack
https://www.chromium.org/Home/chromium-security/memory-safety
https://ldpreload.com/p/kernel-modules-in-rust-lssna2019.pdf
https://alexgaynor.net/2020/feb/18/scaling-software-development/

