◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Every Vote Counts: Ensuring Integrity in Large-Scale Electronic Voting

Speaker: Feng Hao

School of Computing Science Newcastle University, UK

USENIX EVT/WOTE'14

Acknowledgment

Joint work with:

- Matthew Kreeger (Thales E-Security, UK)
- Brian Randell (Newcastle University, UK)
- Dylan Clarke (Newcastle University, UK)
- Siamak F. Shahandashti (Newcastle University, UK)
- Peter Hyun-Jeen Lee (Newcastle University, UK)

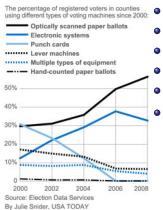
European Research Council

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Our proposal

Summary

E-voting has been widely used worldwide


Direct Recording Electronic (DRE)

Internet voting

ション ふゆ く 山 マ チャット しょうくしゃ

- Local polling station voting using DRE
 - 100% DRE usage in elections in India, Brazil
- Remote e-voting using Internet
 - Estonia held the first national Internet election in 2007

However, e-voting is controversial

- 2000, rapid adoption of e-voting in US.
- 2006, quick abandonment by several states.

・ロッ ・雪 ・ ・ ヨ ・ ・

- 2008, Netherlands suspended e-voting.
- 2009, Germany suspended e-voting.
 - 2009, Ireland suspended e-voting.
- 2014, Norway suspended e-voting.

Our proposal

Summary

What's the future of e-voting?

Will e-voting be more widely used? Or should it be abandoned?

What's wrong with current e-voting deployment?

- They are unverifiable, working like a blackbox.
- Governments hoped to establish trust by certification.
- But it takes only one successful attack on a "certified" system to destroy the confidence.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

End-to-End (E2E) verifiable e-voting

- Lesson from the past: verifiability is important
- But that isn't anything new
- E2E verifiable e-voting has been known for over 20 years
- Many E2E systems proposed in the past
- So the problem solved?

Our proposal

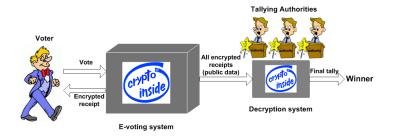
Summary

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

However, there is a gap between theory and practice

• Despite the extensive theoretical research on E2E, the practical impact has been limited.

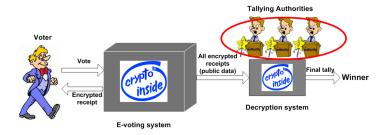
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●


Narrowing the gap - an engineering approach

- We take an engineering approach.
- The basic engineering principle: simplicity
- "Keep everything as simple as possible, but not simpler"
- Hence, we start by asking:

Is the current E2E system as simple as it can be?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()


The state-of-the-art in E2E

- Basically the same as 20 years ago.
- All existing E2E schemes can be described by this architecture.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Where might be the problem?

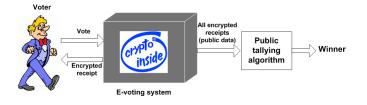
- Existing E2E schemes require trustworthy Tallying Authorities.
- Our hypothesis: the TAs are a significant hurdle in deployment

ション ふゆ く 山 マ チャット しょうくしゃ

Case study: Helios-based UCL election

- Helios was used to elect the president of UCL in 2009.
- Tallying authorities presented "one particularly difficult issue".
 - Authorities were selected from university students/staff.
 - But they knew little about crypto.
 - They didn't know how to generate private keys.
 - They didn't know how to distribute private keys.
 - They didn't know how to store private keys.
 - They didn't know how to create backup of private keys.
- Practical solutions
 - Another group of "experts" did most of the actual work.
 - Authorities were given the USB sticks with private keys.
 - Meanwhile, all keys were backed up by a trusted third party.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()


A motivating question for research

- Helios (and other E2E) requires a TA-based infrastructure
- Setting up such an infrastructure is a significant overhead

Is this overhead always necessary?

(ロ) (型) (E) (E) (E) (O)

A new approach: self-enforcing electronic voting

- At first glance, it may look impossible: performing decryption without any decryption key
- However, it is actually possible.
- The basic intuition: canceling out random factors.

(ロ) (型) (E) (E) (E) (O)

A concrete protocol: DRE-i

- Direct Recording Electronic with Integrity (DRE-i)
- In this talk, we will focus on a local DRE-based election.
- Setup phase
 - Pre-compute electronic ballots
- Oting phase
 - Vote intuitively without needing to understand crypto at all
- Tallying phase
 - Universal verification on tally without involving any authority

・ロト ・ 日 ・ モート ・ 田 ・ うへで

Phase 1: Setup (single-candidate example)

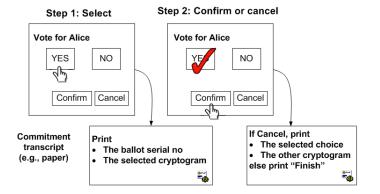
Ballot no i	rand pub	"No" Cryptogram	"Yes" cryptogram
1	g^{x_1}	$g^{x_1y_1}$, 1-out-of-2 ZKP	$g^{x_1y_1} \cdot g$, 1-out-of-2 ZKP
2	g ^{×2}	$g^{X_2 y_2}$, 1-out-of-2 ZKP	$g^{x_2y_2} \cdot g$, 1-out-of-2 ZKP
n	g ^{×n}	$g^{x_n y_n}$, 1-out-of-2 ZKP	$g^{x_n y_n} \cdot g$, 1-out-of-2 ZKP

 $g^{y_i} = \prod_{j < i} g^{x_j} / \prod_{j > i} g^{x_j}$ (see Hao, Zielinski, SPW'06)

- **Well-formedness:** Any single cryptogram is either "No" or "Yes".
- Concealing: A single cryptogram doesn't reveal "No" or "Yes"
- Sevealing: A pair of cryptograms reveal "No"/"Yes".
- Self-tallying: Any arbitrary selection of a cryptogram from each of the N ballots, one can easily compute how many "Yes" votes.

Our proposal

Cancellation formula - an example


Example

Assume N = 4.

$$\sum_{i} x_{i} y_{i} = -x_{1} x_{2} - x_{1} x_{3} - x_{1} x_{4} + x_{2} x_{1} - x_{2} x_{3} - x_{2} x_{4} + x_{3} x_{1} + x_{3} x_{2} - x_{3} x_{4} + x_{4} x_{1} + x_{4} x_{2} + x_{4} x_{3} = 0.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Phase 2: Voting

• Receipt is coercion-free: because of the concealing property.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

• Ballot casting assurance: due to the revealing property.

Our proposal

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへぐ

Phase 3: Tallying

Ballot no i	g^{x_i}	g ^{yi}	Published vote V _i	ZKPs
1	g^{x_1}	g ^y 1	Valid: $g^{x_1y_1}$	a 1-out-of-2 ZKP
2	g ^{×2}	g ^y 2	Valid: $g^{x_2y_2} \cdot g$	a 1-out-of-2 ZKP
n	g^{X_n}	g ^y n	Dummy: $g^{x_n y_n}$, $g^{x_n y_n} \cdot g$	Two 1-out-of-2 ZKP

- Anyone is able to compute $\prod V_i = g^{\sum x_i y_i} \cdot g^{v_i} = g^{\sum v_i}$
- Note that $\sum x_i y_i = 0$ (cancellation formula)

ション ふゆ く 山 マ チャット しょうくしゃ

What if some ballots are missing? - A fail-safe mechanism

- Say a small subset L of ballots are found missing
- One trivial solution
 - Re-publish $g^{x_i y_i}$ for $i \in L$
 - But this harms secrecy of individual ballots leaks too much
- A better solution
 - Publish $A = \prod_{i \in L} g^{x_i y_i}$ (with ZKPs to prove A is well-formed)
 - Minimum leakage: only the partial tally of missing ballots (assuming the attacker has the receipts of all missing ballots).

	Blackbox DRE	DRE-i	Previous E2E
TA involvement	No	No	Yes
Ballot casting assurance	No	Yes	Yes
Transmission integrity	No	Yes	Yes
Tallying Integrity	No	Yes	Yes
Ballot secrecy	UI	UI, setup	UI, setup, TA
Voter privacy	Anonymity	Anonymity	Anonymity
Receipt	No	Yes	Yes
Crypto-awareness of voter	No	No	Yes
Crypto-awareness of auditor	N/A (impossible)	No	Yes
Crypto-awareness of verifier	N/A (impossible)	Yes	Yes

Previous local DRE-based E2E schemes: Chaum (2004), Adida and Neff (2006)

	Blackbox DRE	DRE-i	Previous E2E
TA involvement	No	No	Yes
Ballot casting assurance	No	Yes	Yes
Transmission integrity	No	Yes	Yes
Tallying Integrity	No	Yes	Yes
Ballot secrecy	UI	UI, setup	UI, setup, TA
Voter privacy	Anonymity	Anonymity	Anonymity
Receipt	No	Yes	Yes
Crypto-awareness of voter	No	No	Yes
Crypto-awareness of auditor	N/A (impossible)	No	Yes
Crypto-awareness of verifier	N/A (impossible)	Yes	Yes

Previous local DRE-based E2E schemes: Chaum (2004), Adida and Neff (2006)

	Blackbox DRE	DRE-i	Previous E2E
TA involvement	No	No	Yes
Ballot casting assurance	No	Yes	Yes
Transmission integrity	No	Yes	Yes
Tallying Integrity	No	Yes	Yes
Ballot secrecy	UI	UI, setup	UI, setup, TA
Voter privacy	Anonymity	Anonymity	Anonymity
Receipt	No	Yes	Yes
Crypto-awareness of voter	No	No	Yes
Crypto-awareness of auditor	N/A (impossible)	No	Yes
Crypto-awareness of verifier	N/A (impossible)	Yes	Yes

Previous local DRE-based E2E schemes: Chaum (2004), Adida and Neff (2006)

	Blackbox DRE	DRE-i	Previous E2E
TA involvement	No	No	Yes
Ballot casting assurance	No	Yes	Yes
Transmission integrity	No	Yes	Yes
Tallying Integrity	No	Yes	Yes
Ballot secrecy	UI	UI, setup	UI, setup, TA
Voter privacy	Anonymity	Anonymity	Anonymity
Receipt	No	Yes	Yes
Crypto-awareness of voter	No	No	Yes
Crypto-awareness of auditor	N/A (impossible)	No	Yes
Crypto-awareness of verifier	N/A (impossible)	Yes	Yes

Previous local DRE-based E2E schemes: Chaum (2004), Adida and Neff (2006)

	Blackbox DRE	DRE-i	Previous E2E
TA involvement	No	No	Yes
Ballot casting assurance	No	Yes	Yes
Transmission integrity	No	Yes	Yes
Tallying Integrity	No	Yes	Yes
Ballot secrecy	UI	UI, setup	UI, setup, TA
Voter privacy	Anonymity	Anonymity	Anonymity
Receipt	No	Yes	Yes
Crypto-awareness of voter	No	No	Yes
Crypto-awareness of auditor	N/A (impossible)	No	Yes
Crypto-awareness of verifier	N/A (impossible)	Yes	Yes

Previous local DRE-based E2E schemes: Chaum (2004), Adida and Neff (2006)

	Blackbox DRE	DRE-i	Previous E2E
TA involvement	No	No	Yes
Ballot casting assurance	No	Yes	Yes
Transmission integrity	No	Yes	Yes
Tallying Integrity	No	Yes	Yes
Ballot secrecy	UI	UI, setup	UI, setup, TA
Voter privacy	Anonymity	Anonymity	Anonymity
Receipt	No	Yes	Yes
Crypto-awareness of voter	No	No	Yes
Crypto-awareness of auditor	N/A (impossible)	No	Yes
Crypto-awareness of verifier	N/A (impossible)	Yes	Yes

Previous local DRE-based E2E schemes: Chaum (2004), Adida and Neff (2006)

	Blackbox DRE	DRE-i	Previous E2E
TA involvement	No	No	Yes
Ballot casting assurance	No	Yes	Yes
Transmission integrity	No	Yes	Yes
Tallying Integrity	No	Yes	Yes
Ballot secrecy	UI	UI, setup	UI, setup, TA
Voter privacy	Anonymity	Anonymity	Anonymity
Receipt	No	Yes	Yes
Crypto-awareness of voter	No	No	Yes
Crypto-awareness of auditor	N/A (impossible)	No	Yes
Crypto-awareness of verifier	N/A (impossible)	Yes	Yes

Previous local DRE-based E2E schemes: Chaum (2004), Adida and Neff (2006)

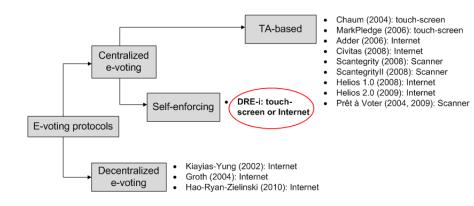
	Blackbox DRE	DRE-i	Previous E2E
TA involvement	No	No	Yes
Ballot casting assurance	No	Yes	Yes
Transmission integrity	No	Yes	Yes
Tallying Integrity	No	Yes	Yes
Ballot secrecy	UI	UI, setup	UI, setup, TA
Voter privacy	Anonymity	Anonymity	Anonymity
Receipt	No	Yes	Yes
Crypto-awareness of voter	No	No	Yes
Crypto-awareness of auditor	N/A (impossible)	No	Yes
Crypto-awareness of verifier	N/A (impossible)	Yes	Yes

Previous local DRE-based E2E schemes: Chaum (2004), Adida and Neff (2006)

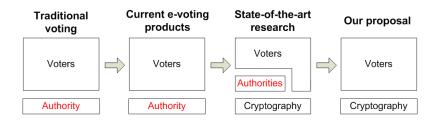
	Blackbox DRE	DRE-i	Previous E2E
TA involvement	No	No	Yes
Ballot casting assurance	No	Yes	Yes
Transmission integrity	No	Yes	Yes
Tallying Integrity	No	Yes	Yes
Ballot secrecy	UI	UI, setup	UI, setup, TA
Voter privacy	Anonymity	Anonymity	Anonymity
Receipt	No	Yes	Yes
Crypto-awareness of voter	No	No	Yes
Crypto-awareness of auditor	N/A (impossible)	No	Yes
Crypto-awareness of verifier	N/A (impossible)	Yes	Yes

Previous local DRE-based E2E schemes: Chaum (2004), Adida and Neff (2006)

	Blackbox DRE	DRE-i	Previous E2E
TA involvement	No	No	Yes
Ballot casting assurance	No	Yes	Yes
Transmission integrity	No	Yes	Yes
Tallying Integrity	No	Yes	Yes
Ballot secrecy	UI	UI, setup	UI, setup, TA
Voter privacy	Anonymity	Anonymity	Anonymity
Receipt	No	Yes	Yes
Crypto-awareness of voter	No	No	Yes
Crypto-awareness of auditor	N/A (impossible)	No	Yes
Crypto-awareness of verifier	N/A (impossible)	Yes	Yes


Previous local DRE-based E2E schemes: Chaum (2004), Adida and Neff (2006)

	Blackbox DRE	DRE-i	Previous E2E
TA involvement	No	No	Yes
Ballot casting assurance	No	Yes	Yes
Transmission integrity	No	Yes	Yes
Tallying Integrity	No	Yes	Yes
Ballot secrecy	UI	UI, setup	UI, setup, TA
Voter privacy	Anonymity	Anonymity	Anonymity
Receipt	No	Yes	Yes
Crypto-awareness of voter	No	No	Yes
Crypto-awareness of auditor	N/A (impossible)	No	Yes
Crypto-awareness of verifier	N/A (impossible)	Yes	Yes


Previous local DRE-based E2E schemes: Chaum (2004), Adida and Neff (2006)

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Categorization of e-voting systems

Background	Motivation	Our proposal	Summary
Summary			

- Existing E2E all require a TA-based infrastructure
- We show such an infrastructure is not always necessary
- We present a DRE-i protocol for for local DRE-based elections
- Future work: self-enforcing e-voting for STV and others

Background	Motivation	Our proposal	Summary
Q & A			

Thank you!