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Elasticity in Distributed Storage 
•  “Elasticity” in distributed storage:  

•  ability to resize dynamically as workload varies 
•  More difficult than elastic computing 

•  Benefits 
•  Re-use for other purposes or reduce energy usage 
•  Save machine hours (operating cost) 

•  Most distributed storage is not elastic 
•  Designed for load balancing, not elasticity 
•  E.g., GFS and HDFS 
•  Deactivating servers may make data unavailable 
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SpringFS Contributions 
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“Agility”: speed of elastic resizing 
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Sierra 

Some elasticity 
Max peak write performance 

Rabbit 

Max elasticity 
Sub-max peak write performance 

SpringFS 

minimize data migration minimize machine hours 

Key metrics 

1. Fill the gap 

2. Propose and address agility 



Agility is Important 
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“Burstiness” in the Facebook HDFS trace 



Agility is Important 
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“Burstiness” in the Facebook HDFS trace 



Agility is Important 
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> 50% potential saving  
of machine hours 
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Agility allows close tracking of workload variation 

“Burstiness” in the Facebook HDFS trace 



Outline 
•  Introduction 

•  Background and motivation 

•  SpringFS design 

•  Evaluation 

•  Conclusion 
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Non-elastic Example: HDFS 
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Almost all servers must be “on” to ensure 100% availability 
•  Little potential for elastic resizing  

Primary replicas 

Tertiary replicas 

Secondary replicas 

Assumption: 
3-way replication 
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Pseudo-random placement, even data layout 



Data Layout in Elastic Storage 
•  General rule: 

•  Take advantage of replication 
•  Always keep the first (primary) replicas “on” 
•  The other replicas can be activated on demand 

•  Notable examples: Sierra [1] and Rabbit [2] 

[1]  E. Thereska et al. Sierra: Practical Power-proportionality for 
 Data Center Storage. Eurosys 2011. 

[2]  J. Cipar et al. Robust and flexible power-proportional 
 storage. SoCC 2010. 
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Sierra Data Layout 
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N/3 

•  Peak write performance: N/3 (as good as HDFS) 

Primary  
servers 

Secondary and 
tertiary servers 
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•  #servers with primary replicas: N/3 
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Rabbit Equal-work Data Layout 
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Primary  
servers p = N / e2 ≈ 0.13N
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Peak write performance: p 

#servers with primary replicas: p 
 (theoretically the best) 



Rabbit When Using Offloading 
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Primary replicas spread across all active servers 

•  Peak write performance: N/3 

•  #servers with primary replicas: N 



Tradeoff Space 
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Outline 
•  Introduction 

•  Background and motivation 

•  SpringFS design 

•  Evaluation 

•  Conclusion 
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SpringFS Design 
•  Bounded write offloading 

•  Dynamically constrain distribution of primary replicas 

•  Read offloading 
•  Preferentially offload reads from write-heavy servers 

•  Passive migration 
•  Delay migration on server re-integration 
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Bounded Write Offloading 
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Offload set: automatically adapts to workload 
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Bounded Write Offloading 
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N m 
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m = N/3 m = p 
Rabbit  Sierra 



SpringFS Implementation 
•  Modified instance of HDFS 

•  Written in Java and Python 

•  Built and used a Scriptable HDFS interface 
•  Data placement 
•  Load balancing 
•  Data Migration 
•  Implement SpringFS and Rabbit in the same system 

•  Resizing agent 
•  Activate/deactivate servers according to workload 
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Outline 
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•  Evaluation 
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Evaluation Overview 
•  Experiments with SpringFS prototype 

•  Analysis with real-world traces 
•  Hadoop/HDFS deployments at Facebook (FB) and 

Cloudera Customers (CC) 

•  Summary of results 
•  SpringFS improves over state-of-the-art designs 

– Reduces data migration 
– Reduces machine hour usage (often near-ideal) 
– Provides range of options between Rabbit and 

Sierra 
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Data Migration in SpringFS Prototype 
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Experimental setup: 
•  30 DataNodes 
•  4 primary servers 
•  2GB file per server 
•  128MB block size 

Same performance 



Policy Analysis with the Facebook Trace 
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“Ideal” system: no migration for resizing  

Area under curve: aggregate machine hour usage 
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Machine Hours (SpringFS vs. Ideal) 
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No cleanup work 

Extra servers activated due to passive migration 
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#primary servers 



Machine Hour Usage 
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SpringFS: 6-120% improvement 

SpringFS within  
5% off “Ideal” 
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Data Migration 
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SpringFS: 9-208X improvement 
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Conclusion 
•  SpringFS: a new elastic distributed storage 

•  Fills the gap in state-of-the-art designs 

•  Agility is important 
•  Ability to track workload burstiness 

•  Address agility by minimizing data migration 
•  Bounded write offloading 
•  Read offloading + passive migration 

•  Much lower machine hour usage 
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