
SpringFS: Bridging Agility and Performance
in Elastic Distributed Storage

Lianghong Xu
Jim Cipar, Elie Krevat, Alexey Tumanov, Nitin Gupta,

Mike Kozuch (Intel), Greg Ganger

Carnegie Mellon University

http://www.pdl.cmu.edu/ Lianghong Xu © Feb 14!

Elasticity in Distributed Storage
•  “Elasticity” in distributed storage:

•  ability to resize dynamically as workload varies
•  More difficult than elastic computing

•  Benefits
•  Re-use for other purposes or reduce energy usage
•  Save machine hours (operating cost)

•  Most distributed storage is not elastic
•  Designed for load balancing, not elasticity
•  E.g., GFS and HDFS
•  Deactivating servers may make data unavailable

http://www.pdl.cmu.edu/ 2 Lianghong Xu © Feb 14!

SpringFS Contributions

http://www.pdl.cmu.edu/ 3

“Agility”: speed of elastic resizing

 Lianghong Xu © Feb 14!

Sierra

Some elasticity
Max peak write performance

Rabbit

Max elasticity
Sub-max peak write performance

SpringFS

minimize data migration minimize machine hours

Key metrics

1. Fill the gap

2. Propose and address agility

Agility is Important

 <your name here> © 2/24/14!http://www.pdl.cmu.edu/ 4

“Burstiness” in the Facebook HDFS trace

Agility is Important

 <your name here> © 2/24/14!http://www.pdl.cmu.edu/ 5

“Burstiness” in the Facebook HDFS trace

Agility is Important

http://www.pdl.cmu.edu/ 6

> 50% potential saving
of machine hours

 Lianghong Xu © Feb 14!

Agility allows close tracking of workload variation

“Burstiness” in the Facebook HDFS trace

Outline
•  Introduction

•  Background and motivation

•  SpringFS design

•  Evaluation

•  Conclusion

http://www.pdl.cmu.edu/ 7 Lianghong Xu © Feb 14!

Non-elastic Example: HDFS

http://www.pdl.cmu.edu/ 8

Almost all servers must be “on” to ensure 100% availability
•  Little potential for elastic resizing

Primary replicas

Tertiary replicas

Secondary replicas

Assumption:
3-way replication

 Lianghong Xu © Feb 14!

Server number D
at

a
st

or
ed

 o
n

se
rv

er
 X

N 1

Pseudo-random placement, even data layout

Data Layout in Elastic Storage
•  General rule:

•  Take advantage of replication
•  Always keep the first (primary) replicas “on”
•  The other replicas can be activated on demand

•  Notable examples: Sierra [1] and Rabbit [2]

[1] E. Thereska et al. Sierra: Practical Power-proportionality for
 Data Center Storage. Eurosys 2011.

[2] J. Cipar et al. Robust and flexible power-proportional
 storage. SoCC 2010.

 <your name here> © 2/24/14!http://www.pdl.cmu.edu/ 9

Sierra Data Layout

http://www.pdl.cmu.edu/ 10

N/3

•  Peak write performance: N/3 (as good as HDFS)

Primary
servers

Secondary and
tertiary servers

 Lianghong Xu © Feb 14!

Server number

D
at

a
st

or
ed

 o
n

se
rv

er
 X

N 1

•  #servers with primary replicas: N/3

D
at

a
st

or
ed

 o
n

se
rv

er
 X

Server number N 1

Rabbit Equal-work Data Layout

http://www.pdl.cmu.edu/ 11

Primary
servers p = N / e2 ≈ 0.13N

 Lianghong Xu © Feb 14!

Peak write performance: p

#servers with primary replicas: p
 (theoretically the best)

Rabbit When Using Offloading

http://www.pdl.cmu.edu/ 12

D
at

a
st

or
ed

 o
n

th
e

se
rv

er

Server number N

 Lianghong Xu © Feb 14!

Primary replicas spread across all active servers

•  Peak write performance: N/3

•  #servers with primary replicas: N

Tradeoff Space

http://www.pdl.cmu.edu/ 13

#s
er

ve
rs

 w
ith

 p
rim

ar
y

re
pl

ic
as

Peak write performance (normalized to 1 server)
0

better

be
tte

r
N HDFS

Rabbit (offloaded)

N/3

N/3 Sierra (all cases)

p

p
Rabbit (no offload)

SpringFS
(depending on workload)

 Lianghong Xu © Feb 14!

Outline
•  Introduction

•  Background and motivation

•  SpringFS design

•  Evaluation

•  Conclusion

http://www.pdl.cmu.edu/ 14 Lianghong Xu © Feb 14!

SpringFS Design
•  Bounded write offloading

•  Dynamically constrain distribution of primary replicas

•  Read offloading
•  Preferentially offload reads from write-heavy servers

•  Passive migration
•  Delay migration on server re-integration

http://www.pdl.cmu.edu/ 15 Lianghong Xu © Feb 14!

Bounded Write Offloading

http://www.pdl.cmu.edu/ 16

D
at

a
st

or
ed

 o
n

se
rv

er
 X

Server number
N p m

Offload set: automatically adapts to workload
 Lianghong Xu © Feb 14!

Bounded Write Offloading

http://www.pdl.cmu.edu/ 17

N m

 Lianghong Xu © Feb 14!

m = N/3 m = p
Rabbit Sierra

SpringFS Implementation
•  Modified instance of HDFS

•  Written in Java and Python

•  Built and used a Scriptable HDFS interface
•  Data placement
•  Load balancing
•  Data Migration
•  Implement SpringFS and Rabbit in the same system

•  Resizing agent
•  Activate/deactivate servers according to workload

 <your name here> © 2/24/14!http://www.pdl.cmu.edu/ 18

Outline
•  Introduction and motivation

•  Background

•  SpringFS design

•  Evaluation

•  Conclusion

http://www.pdl.cmu.edu/ 19 Lianghong Xu © Feb 14!

Evaluation Overview
•  Experiments with SpringFS prototype

•  Analysis with real-world traces
•  Hadoop/HDFS deployments at Facebook (FB) and

Cloudera Customers (CC)

•  Summary of results
•  SpringFS improves over state-of-the-art designs

– Reduces data migration
– Reduces machine hour usage (often near-ideal)
– Provides range of options between Rabbit and

Sierra
 <your name here> © 2/24/14!http://www.pdl.cmu.edu/ 20

Data Migration in SpringFS Prototype

http://www.pdl.cmu.edu/ 21

0

50

100

150

200

250

300

350

400

450

0 5 10 15 20 25 30

N
um

be
r o

f b
lo

ck
s

to
 m

ov
e

Target active servers

Rabbit (no offload)
Rabbit (offload=30)
SpringFS(offload=6)
SpringFS(offload=8)
SpringFS(offload=10)

 Lianghong Xu © Feb 14!

Experimental setup:
•  30 DataNodes
•  4 primary servers
•  2GB file per server
•  128MB block size

Same performance

Policy Analysis with the Facebook Trace

http://www.pdl.cmu.edu/ 22

“Ideal” system: no migration for resizing

Area under curve: aggregate machine hour usage

 Lianghong Xu © Feb 14!

Machine Hours (SpringFS vs. Ideal)

http://www.pdl.cmu.edu/ 23

No cleanup work

Extra servers activated due to passive migration

 Lianghong Xu © Feb 14!

#primary servers

Machine Hour Usage

http://www.pdl.cmu.edu/ 24

SpringFS: 6-120% improvement

SpringFS within
5% off “Ideal”

 Lianghong Xu © Feb 14!

Data Migration

http://www.pdl.cmu.edu/ 25

SpringFS: 9-208X improvement

 Lianghong Xu © Feb 14!

Conclusion
•  SpringFS: a new elastic distributed storage

•  Fills the gap in state-of-the-art designs

•  Agility is important
•  Ability to track workload burstiness

•  Address agility by minimizing data migration
•  Bounded write offloading
•  Read offloading + passive migration

•  Much lower machine hour usage

 <your name here> © 2/24/14!http://www.pdl.cmu.edu/ 26

