Reducing File System
Tail Latencies with
Chopper

Jun He, Duy Nguyen®,
Andrea C. Arpaci-Dusseau,
Remzi H. Arpaci-Dusseau

Department of Computer Sciences, ‘Department of Statistics
University of Wisconsin, Madison

WISCONSIN

IIIIIIIIIIIIIIIIIIIII -MADISON

Uncommon tail latencies
become common at scale

=]=1=
=p=1=

Uncommon tail latencies
become common at scale

contributed articles

D01:10.1145/2408776.2408794

Software techniques that tolerate latency
variability are vital to building responsive
large-scale Web services.

BY JEFFREY DEAN AND LUIZ ANDRE BARROSO

The Tail
at Scale

SYSTEMS THAT RESPOND to user actions quickly (within
100ms) feel more fluid and natural to users than
those that take longer.’ Improvements in Internet
connectivity and the rise of warehouse-scale computing
systems” have enabled Web services that provide fluid
responsiveness while consulting multi-terabyte datasets
spanning thousands of servers; for example, the Google
search system updates query results interactively as
the user types, predicting the most likely query based
on the prefix typed so far, performing the search and
showing the results within a few tens of milliseconds.
Emerging augmented-reality devices (such as the
Google Glass prototype’) will need associated Web
services with even greater responsiveness in order to
guarantee seamless interactivity.

It is challenging for service providers to keep the tail
of latency distribution short for interactive services
as the size and complexity of the system scales up or

74 COMMUNICATIONS OF THE ACM RUARY VOL. 58 | N

as overall use increases. Temporary
high-latency episodes (unimportant in
moderate-size systems) may come to
dominate overall service performance at
largescale. Justas fault-tolerant comput-
ingaims to create a reliable whole out of
less-reliable parts, large online services
need to create a predictably responsive
whole out of less-predictable parts;
we refer to such systems as “latency
tail-tolerant,” or simply “tail-tolerant.”
Here, we outline some common causes
for high-latency episodes in large online
services and describe techniques that
reduce their severity or mitigate their
effect on whole-system performance.
In many cases, tail-tolerant techniques
can take advantage of resources already
deployed to achieve fault-tolerance, re-
sulting in low additional overhead. We
explore how these techniques allow sys-
tem utilization to be driven higher with-
out lengthening the latency tail, thus
avoiding wasteful overprovisioning.

‘Why Variability Exists?

Variability of response time that leads
to high tail latency in individual com-
ponents of a service can arise for many
reasons, including:

Shared resources. Machines might
be shared by different applications
contending for shared resources (such
as CPU cores, processor caches, mem-
ory bandwidth, and network band-
width), and within the same applica-
tion different requests might contend
for resources;

Daemons. Background daemons
may use only limited resources on aver-
age but when scheduled can generate
multi-millisecond hiccups;

n key insights

= Even rare performance hiccups affect
asignificant fraction of all requests In
large-scale distributed systems.

= Eliminating all sources of latency

variability in large-scale systems

Is impractical, especially in shared

environments.

Using an approach analogous to

fault-tolerant computing, tail-tolerant

software techniques form a predictable

whole out of less-predictable parts.

“Temporary high-latency episodes (unimportant in
moderate-size systems) may come to dominate overall
service performance at large scale.”

Uncommon tail latencies
become common at scale

=]=1=
=p=1=

Uncommon tail latencies
become common at scale

=]=1=
=p=1=

Uncommon tail latencies
become common at scale

Important to avoid long latencies at
every node in the data center

Local file systems
contribute to tail latency

Local Local Local Local Local
FS FS FS FS FS

Local file systems
contribute to tail latency

Local Local Local Local Local
FS FS FS FS FS

Important to avoid long latencies In

local file systems

Chopper discovers high-
latency operations in local FS

Local FS

Goal

Find problematic corner cases in

file system block allocator
- Challenge

File system input space is huge

Chopper explores file systems
by statistical techniques

Chopper explores file systems
by statistical techniques

We provide an overall analysis of file system
block allocations (XFS, ext4)

Chopper explores file systems
by statistical techniques

We provide an overall analysis of file system
block allocations (XFS, ext4)

We have analyzed unexpected behaviors in detail

Chopper explores file systems
by statistical techniques

We provide an overall analysis of file system
block allocations (XFS, ext4)

We have analyzed unexpected behaviors in detail

We have found and fixed four allocation issues in
ext4 and significantly improved layout quality

Outline

Part 1
Collect Data

Part 2

Analyze Data

Part 3
Understand File System

Outline

—> Part 1

Collect Data

Part 2

Analyze Data

Part 3
Understand File System

We guantify and qualify
everything
Workload
File system

v

Layout quality

We guantify and qualify
everything
Workload
File system

v

Layout quality

d-span
(unit: byte)

o -

We guantify and qualify
everything
Workload
File system

v

Layout quality

d-span
(unit: byte)

o -

What values to pick for the

factors?

File System ‘ Workload
* Disk Size - = . i | F|Ie Size - .
© Used Ratio * 87 ,' ' Chunk Count
; pp— lnternal Densﬂy
'. "9‘-*"" Chunk Order & o

.;Fragmentatlon
e CPU Count

Sync ,
_ Flle Count
- Dlrectory Span

What values to pick for the

factors?

File System ‘ Workload

- Disk Slze 1,2,4,. 64GB F|Ie Slze b

. Used Ratio * 3 Chunk Count
; pp— lnternal Densﬂy
'. "9‘-*"" Chunk Order - o

.;Fragmentatlon
e CPU Count

Sync ,
_ Flle Count
- Dlrectory Span

What values to pick for the

factors?

File System ‘ Workload

+ Disk Slze 1,2,4,. 64GB Flle Slze 8,16,. 256KB

-»'.Used Ratlo W% Chunk Count G
" g— lnternal DenS|ty""_‘_. s
'. "9‘-*"" Chunk Order i Ca

.;Fragmentatlon
e CPU Count

Sync ,
_ Flle Count
- Dlrectory Span

What values to pick for the

factors?

File System Workload
. Disk Size [EXR GGB Y08, 16,..256KB
" Used Ratlo ; 4 ;-Chunk Count i
o -i;’.lnternal Den5|ty
£ '"Chunk Order 3 i

v.e ;Frag mentatlon
CPU Cou nt

; FA-; -

After reﬂmrg,
250 years to explore a\ Combmatlons

v wWweiie

. Dlrec_tory Span

We use Latin Hypercube
Sampling to search efficiently

We use Latin Hypercube
Sampling to search efficiently

File Size

8KB 16KB 24KB 32KB

Disk Size
1 1GB 2GB 8GB 16GB

andom Sampling

We use Latin Hypercube
Sampling to search efficiently

File Size

8KB 16KB 24KB 32KB

We use Latin Hypercube
Sampling to search efficiently

File Size

8KB 16KB 24KB 32KB

We use Latin Hypercube
Sampling to search efficiently

File Size

8KB 16KB 24KB 32KB

Disk Size
1 1GB 2GB 8GB 16GB

andom Sampling

We use Latin Hypercube
Sampling to search efficiently

File Size File Size
8KB 16KB 24KB 32KB 8KB 16KB 24KB 32KB
5 5
QD © Q O
N — N —
N o N &
x © x ©
& o ¢ o
AR a R
an an
O 2
Random Sampling Latin Hypercube Sampling

We use Latin Hypercube
Sampling to search efficiently

File Size File Size
8KB 16KB 24KB 32KB 8KB 16KB 24KB 32KB
5 5
QD © Q O
N — N —
N o N &
x © x ©
& o ¢ o
AR a R
an an
O 2
Random Sampling Latin Hypercube Sampling

We use Latin Hypercube
Sampling to search efficiently

File Size File Size
8KB 16KB 24KB 32KB 8KB 16KB 24KB 32KB
5 5
QD © Q O
N — N —
N o N6
x © x ©
& o ¢ o
AR a R
an an
O 2
Random Sampling Latin Hypercube Sampling

- Explores space evenly

- Aids visualization
- Explores interactions between factors well

We use Latin Hypercube
Sampling to search efficiently

File Size File Size
8KB 16KB 24KB 32KB 8KB 16KB 24KB 32KB
an an
O 3 Q3
N = N
N o NG
x © x ©
& o ¢ o
AR a R
an an
O 2
Random Sampling Latin Hypercube Sampling

- Explores space evenly
- Aids visualization

- Explores interactions between factors well

16384 samples, 30 mins with 32 machines

d-span is a signal of block
allocation problems

d-span

Al B
d BEN

d-span is a signal of block
allocation problems

d-span Average
block distance

'EE W /\

W

d-span is a signal of block
allocation problems

d-span Average
block distance

E /\

W

d-span is a signal of block
allocation problems

d-span Average End-to-end
block distance performance
Al B
d BE N

AN
EEE B
_ Complex _

Complex

d-span is a signal of block
allocation problems

d-span Average End-to-end
block distance performance
Yy | /\
7N N N

S
T

d-span is a signal of block
allocation problems

d-span Average End-to-end
block distance performance

~ LN

>

A

Simple

N~ S
&
Informative Confounded

How Chopper works?

experimental

How Chopper works?

experimental

RAM FS

How Chopper works?

-4_..

How Chopper works?

 loapig devce +—
el

How Chopper works?

G —
 loapig davis +—
el

How Chopper works?

How Chopper works?

 Wordosd s s dspan
| Flesystem
—
 looping device <
el <

How Chopper works?

How Chopper works?

- All operations are in user space

- No kernel modification needed

Outline

Part 1
Collect Data

» Part 2

Analyze Data

Part 3
Understand File System

10% of tests on ext4 have
d-span > 10GB

>0.9-
B (.8 - \

o 0.6 - extd

0 8 16 24 32 40 48 56
d—span (GB)

|
64

10% of tests on ext4 have
d-span > 10GB

ext4’s block allocator has a large
performance tail

| |
0 8 16 24 32 40 48 56 64
d—span (GB)

Factor prioritization shows which
factors influence layout the most

®
C _
S| e o S
0p) 0p)
© © ®
1 2 1 2
Factor A Factor B

Less important More important

Factor prioritization shows which
factors influence layout the most in ext4

Most important

\4

Least important
Importance (Variance Contribution)

Factor prioritization shows which
factors influence layout the most in ext4

FreeSpaceLayout{ |

UsedRatio { |

| | |
0.0 0.2 0.4 0.6
Importance (Variance Contribution)

Factor prioritization shows which
factors influence layout the most in ext4

DiskSize [N

FreeSpaceLayout{ |

UsedRatio { |

| | |
0.0 0.2 0.4 0.6
Importance (Variance Contribution)

Factor prioritization shows which
factors influence layout the most in ext4

DiskSize { [HINNEIEGEGEGEGEE
FileSize4{ |G

FreeSpaceLayout{ |

UsedRatio { |

| | |
0.0 0.2 0.4 0.6
Importance (Variance Contribution)

Factor prioritization shows which
factors influence layout the most in ext4

DiskSize -

FileSize -

Sync -
ChunkOrder -
Fsync -
FreeSpacelayout -

UsedRatio -

| | |
0.0 0.2 0.4 0.6
Importance (Variance Contribution)

Factor prioritization shows which
factors influence layout the most in ext4

DiskSize -

FileSize -

Sync -
ChunkOrder -
Fsync -
FreeSpacelayout -
DirectorySpan -
UsedRatio -
InternalDensity -
FileCount -

CPUCount -

I I I
0.0 0.2 0.4 0.6

Importance (Variance Contribution)

Factor prioritization shows which
factors influence layout the most in ext4

DiskSize -

FileSize -

Sync -
ChunkOrder -
Fsync -
FreeSpacelayout -
DirectorySpan -
UsedRatio -
InternalDensity -

Many factors influence

FileCount - data layout unexpectedly
CPUCount -

| | |
0.0 0.2 0.4 0.6
Importance (Variance Contribution)

Some combinations always

produce good layouts

Always good

® Sometimes bad

T OO+ O™rOr~rO~O 0O+ O

010
010
001
001
000
000

111
111

110
110
101
101

¢ 100
€ 100
%011
L 011

Some combinations always

produce good layouts

Always good

® Sometimes bad

Good
Region

T OO+ O™rOr~rO~O 0O+ O

111
111
110
110
101
101
o 100
100
011
010
010
001
001
000
000

-
>
(dp)]
L 011

Some combinations always

produce good layouts

Always good

® Sometimes bad

Good

ee 00000 Region
0000000

— OO0 +0

<t
e
>
)
=
>
d
)
e
Q
Q
Q.
>
)
c
-
e
(&)
O
-
Q
o
=
A
-
O
=
(&)
©
LL

Summary of unexpected
behaviors In ext4

Summary of unexpected
behaviors In ext4

Linux ext4 may spread files wider on larger disks

Summary of unexpected
behaviors In ext4

Linux ext4 may spread files wider on larger disks

File size influences d-span more than expected

Summary of unexpected
behaviors In ext4

Linux ext4 may spread files wider on larger disks
File size influences d-span more than expected

Sequential writes can be harmful

Summary of unexpected
behaviors In ext4

Linux ext4 may spread files wider on larger disks
File size influences d-span more than expected
Sequential writes can be harmful

Patterns of sync () and £sync () change layout

Summary of unexpected
behaviors In ext4

Linux ext4 may spread files wider on larger disks
File size influences d-span more than expected
Sequential writes can be harmful

Patterns of sync () and £sync () change layout

Fragmentations and used ratio of disk don’t matter

Summary of unexpected
behaviors In ext4

Linux ext4 may spread files wider on larger disks
File size influences d-span more than expected
Sequential writes can be harmful

Patterns of sync () and £sync () change layout
Fragmentations and used ratio of disk don’t matter

Factors interact when determining data layout

Summary of unexpected
behaviors In ext4

Linux ext4 may spread files wider on larger disks
File size influences d-span more than expected
Sequential writes can be harmful

Patterns of sync () and £sync () change layout
Fragmentations and used ratio of disk don’t matter

Factors interact when determining data layout

More In the paper

Outline

Part 1
Collect Data

Part 2

Analyze Data

—> Part 3

Understand File System

The unexpected behaviors in ext4 can
be explained by four design issues

Special End Policy
Scheduler Dependency
File Size Dependency in paper

Normalization Bug in paper

Special End Policy

Always good

® Sometimes bad

r 1T 11T 111 11 17T 1 1T 1T 1T
~—TfO~rO+~rOr~rO+~O0O+~-O0O+~0+0

T OO TrFmmOO ™Y T~ OO™ 0O

T mrOOOOT™T T~ 00O

T rm rmrm O OO0 0O0OO0OO0O
o

uhs4

111

000

Always good

® Sometimes bad

Writing and syncing file end
first could avoid poor layout

T OO ~rO~T0O0O~rO~O+—0O+~0O

111
111
110
110
101
101
o 100
100
011
010
010
001
001
000
000

C
>
(dp)]
L 011

file end

ing

d sync

Ing an

first could avoid poor layout

Wr

Always good

® Sometimes bad

1110
1101
1100
1011
1010

o 1001
1000
50111

L0110
0100
0011
0010
0001
0000

1111

0101

Write file end first

d syncing file end

Ing an

first could avoid poor layout

Wr

® Sometimes bad

Always good

- 10cE

L 0g12
-2012 o
- 1 €02 O
-£102 Q
- 0l
- 2og) &
- ogzt ©
L 0zl
L 20l
L 201
L 12€0
L 21€0
L 1620
L £120
L 2€10
L ¢210

0110
0101
0100
0011
0010
0001
0000

Write file end first

Why layout is bad? The allocator treats
the ending data extent of a file differently

Condition 1: the extent is at the end of the file
Condition 2: the file is closed

A file: __ending
- >

Why layout is bad? The allocator treats
the ending data extent of a file differently

Condition 1: the extent is at the end of the file
Condition 2: the file is closed

A file:

_ >

Always good

® Sometimes bad

1 1 1T 1T 1T T T 1T 1T 71T 7T 717°T1T°T11
—TO~TrO OO O ~O+~0+0O

110
101
101

o 100
€ 100
n

111
111
110
011
010
010
001
001
000
000

L 011

Why ChunkOrder=3120 and
Fsync=1100 always have good layout?

Cond 1 (is end?):
Cond 2 (is closed?):

Special End?

fsync() fsync()
1 1 0 0

Why ChunkOrder=3120 and
Fsync=1100 always have good layout?

Cond 1 (isend?): ¢/
Cond 2 (is closed?):

Special End?

fsync() fsync()
1 1 0 0

Why ChunkOrder=3120 and
Fsync=1100 always have good layout?

Cond 1 (isend?): ¢
Cond 2 (is closed?):) 4

Special End?

fsync() fsync()
1 1 0 0

Why ChunkOrder=3120 and
Fsync=1100 always have good layout?

Cond 1 (isend?): ¢
Cond 2 (is closed?):) 4

Special End? x

fsync() fsync()
1 1 0 0

Why ChunkOrder=3120 and
Fsync=1100 always have good layout?

X X X

Cond 1 (is end?): ¢/
Cond 2 (is closed?):) 4

Special End? x

............. TTTT ime

fsync() fsync()

Why ChunkOrder=3120 and
Fsync=1100 always have good layout?

v
X
............. T,TTT. Time

fsync() fsync()

X
% Xk
X X

X

Cond 1 (is end?):
Cond 2 (is closed?):

Special End?

X
Xk
X

Why ChunkOrder=3120 and
Fsync=1100 always have good layout?

X

X

X

Cond 1 (is end?): ¢

Cond 2 (is closed?):) 4 X K X
Special End? x x x x

3]1] 2|0
............. TTTT Time

fsync() fsync()

Special End Policy is never triggered

Special End Policy

Fix
Treat non-ending and ending extents equally

Lesson Learned

Policies for different circumstances should be
harmonious with one another

Scheduler Dependency

6% of d-spans are different
In two repeated experiments

16384 tests 16384 tests

Up to 44GB difference on a 64GB disk

6% of d-spans are different
In two repeated experiments

16384 tests 16384 tests

Up to 44GB difference on a 64GB disk

Data layout can be random

Data layouts of small files
depend on OS scheduler

flushing thread %...

Data layouts of small files
depend on OS scheduler

flushing thread%

flushing thread %...

Reserved Space Reserved Space
for CPUO for CPU1

flushing thread

Reserved Space Reserved Space
for CPUO for CPU1

Scheduler Dependency

Fix
Choose locations based on inode number,
instead of CPU id

Lesson Learned

Policies should not depend on environmental
factors that may change and are outside the
control of the file system

Issues found and fixed

Special End Policy
Scheduler Dependency
File Size Dependency in paper
Target locations depend on dynamic file size

Normalization Bug in paper

Block allocation request are not correctly
adjusted

Removing the issues significantly
cuts tail size of d-span distribution

20.9-
% 0.8 - \
D 07 =

0 0.6 - Before

-
O 0.2 -

| | | | | | | | |
0 8 16 24 32 40 48 56 64
d—span (GB)

Removing the issues significantly
cuts tail size of d-span distribution

20.9-
% 0.8 - \
D 07 =

0 0.6 - Before

= -
O 0.2

| | | | | | | | |
0 8 16 24 32 40 48 56 64
d—span (GB)

Our fixes improve ext4d’s data layout

But, do our fixes reduce
latencies?

‘© 1500 -
Before

|

Update Time (m
o
3

500 ~

2 4 8 16
Number of Creating Threads

But, do our fixes reduce
latencies?

‘© 1500 -
Before

|

Update Time (m
o
3

500 ~

2 4 8 16
Number of Creating Threads

But, do our fixes reduce
latencies?

' 1500 -

—
-
-
o

Update Time (m

500 ~

Number of Creating Threads

But, do our fixes reduce
|atencies?

—
o)
-
o

Before

—
-
-
o

500 ~

Update Time (ms)

Number of Creating Threads

Our fixes reduce tail latencies

Conclusions

- Statistical techniques are practical

- Found and fixed four allocation issues in ext4

* Our fixes » better layouts » lower latency at a node
» lower latency at scale

- Lessons learned

- Policies should be harmonious
- Policies should not depend on environmental factors

Conclusions

- Statistical techniques are practical
- Found and fixed four allocation issues In ext4

* Our fixes » better layouts » lower latency at a node
» lower latency at scale

- Lessons learned
- Policies should be harmonious
- Policies should not depend on environmental factors

Rigorous statistics will help to reduce unexpected

iIssues caused by intuitive but unreliable design decisions

Source code and data

http://research.cs.wisc.edu/adsl/Software/chopper/

Thanks!

http://research.cs.wisc.edu/adsl/Software/chopper/

