
Reducing File System
Tail Latencies with

Chopper
Jun He, Duy Nguyen+,

Andrea C. Arpaci-Dusseau,
Remzi H. Arpaci-Dusseau

Department of Computer Sciences, +Department of Statistics
University of Wisconsin, Madison

Uncommon tail latencies
become common at scale

Uncommon tail latencies
become common at scale

“Temporary high-latency episodes (unimportant in
moderate-size systems) may come to dominate overall

service performance at large scale.”

Uncommon tail latencies
become common at scale

Uncommon tail latencies
become common at scale

Uncommon tail latencies
become common at scale

Important to avoid long latencies at
every node in the data center

Local file systems
contribute to tail latency

Local
FS

Local
FS

Local
FS

Local
FS

Local
FS

Local file systems
contribute to tail latency

Local
FS

Local
FS

Local
FS

Local
FS

Local
FS

Important to avoid long latencies in
local file systems

Chopper discovers high-
latency operations in local FS

Local FS

Block
Allocator

Goal
Find problematic corner cases in

file system block allocator

Challenge
File system input space is huge

Chopper explores file systems
by statistical techniques

Chopper explores file systems
by statistical techniques

We provide an overall analysis of file system
block allocations (XFS, ext4)

Chopper explores file systems
by statistical techniques

We provide an overall analysis of file system
block allocations (XFS, ext4)

We have analyzed unexpected behaviors in detail

Chopper explores file systems
by statistical techniques

We provide an overall analysis of file system
block allocations (XFS, ext4)

We have analyzed unexpected behaviors in detail

We have found and fixed four allocation issues in
ext4 and significantly improved layout quality

Outline
Part 1

Collect Data

Part 2
Analyze Data

Part 3
Understand File System

Outline
Part 1

Collect Data

Part 2
Analyze Data

Part 3
Understand File System

We quantify and qualify
everything

Layout quality

Workload
File system

INPUT

OUTPUT

{

We quantify and qualify
everything

Layout quality

Workload
File system

d-span
(unit: byte)

…file: First Last

INPUT

OUTPUT

{

We quantify and qualify
everything

Layout quality

Workload
File system

d-span
(unit: byte)

…file: First Last

First Last

First Last

Good:

Bad: …

INPUT

OUTPUT

{

What values to pick for the
factors?

• Disk Size
• Used Ratio
• Fragmentation
• CPU Count

• File Size
• Chunk Count
• Internal Density
• Chunk Order
• Fsync
• Sync
• File Count
• Directory Span

File System Workload

What values to pick for the
factors?

• Disk Size
• Used Ratio
• Fragmentation
• CPU Count

• File Size
• Chunk Count
• Internal Density
• Chunk Order
• Fsync
• Sync
• File Count
• Directory Span

1,2,4,..64GB

File System Workload

What values to pick for the
factors?

• Disk Size
• Used Ratio
• Fragmentation
• CPU Count

• File Size
• Chunk Count
• Internal Density
• Chunk Order
• Fsync
• Sync
• File Count
• Directory Span

1,2,4,..64GB 8,16,..256KB

File System Workload

What values to pick for the
factors?

• Disk Size
• Used Ratio
• Fragmentation
• CPU Count

• File Size
• Chunk Count
• Internal Density
• Chunk Order
• Fsync
• Sync
• File Count
• Directory Span

1,2,4,..64GB 8,16,..256KB

After refining,
250 years to explore all combinations

File System Workload

We use Latin Hypercube
Sampling to search efficiently

We use Latin Hypercube
Sampling to search efficiently

Random Sampling

X
X X

X

File Size

D
is

k
Si

ze

8KB 16KB 24KB 32KB

1G
B

 2
G

B
 8

G
B

16
G

B

We use Latin Hypercube
Sampling to search efficiently

Random Sampling

X
X X

X

File Size

D
is

k
Si

ze

8KB 16KB 24KB 32KB

1G
B

 2
G

B
 8

G
B

16
G

B

We use Latin Hypercube
Sampling to search efficiently

Random Sampling

X
X X

X

File Size

D
is

k
Si

ze

8KB 16KB 24KB 32KB

1G
B

 2
G

B
 8

G
B

16
G

B

We use Latin Hypercube
Sampling to search efficiently

Random Sampling

X
X X

X

File Size

D
is

k
Si

ze

8KB 16KB 24KB 32KB

1G
B

 2
G

B
 8

G
B

16
G

B

We use Latin Hypercube
Sampling to search efficiently

File Size

D
is

k
Si

ze
Latin Hypercube Sampling

X
X

X
X

8KB 16KB 24KB 32KB

1G
B

 2
G

B
 8

G
B

16
G

B
Random Sampling

X
X X

X

File Size

D
is

k
Si

ze

8KB 16KB 24KB 32KB

1G
B

 2
G

B
 8

G
B

16
G

B

We use Latin Hypercube
Sampling to search efficiently

File Size

D
is

k
Si

ze
Latin Hypercube Sampling

X
X

X
X

8KB 16KB 24KB 32KB

1G
B

 2
G

B
 8

G
B

16
G

B
Random Sampling

X
X X

X

File Size

D
is

k
Si

ze

8KB 16KB 24KB 32KB

1G
B

 2
G

B
 8

G
B

16
G

B

We use Latin Hypercube
Sampling to search efficiently

File Size

D
is

k
Si

ze
Latin Hypercube Sampling

X
X

X
X

8KB 16KB 24KB 32KB

1G
B

 2
G

B
 8

G
B

16
G

B
Random Sampling

X
X X

X

File Size

D
is

k
Si

ze

8KB 16KB 24KB 32KB

1G
B

 2
G

B
 8

G
B

16
G

B

• Explores space evenly
• Aids visualization
• Explores interactions between factors well

We use Latin Hypercube
Sampling to search efficiently

File Size

D
is

k
Si

ze
Latin Hypercube Sampling

X
X

X
X

8KB 16KB 24KB 32KB

1G
B

 2
G

B
 8

G
B

16
G

B
Random Sampling

X
X X

X

File Size

D
is

k
Si

ze

8KB 16KB 24KB 32KB

1G
B

 2
G

B
 8

G
B

16
G

B

• Explores space evenly
• Aids visualization
• Explores interactions between factors well

16384 samples, 30 mins with 32 machines

d-span is a signal of block
allocation problems

We use
d-span

A

B

d-span is a signal of block
allocation problems

We use
d-span

A

B

Alternative 1
Average

block distance

d-span is a signal of block
allocation problems

We use
d-span

A

B

Complex

Alternative 1
Average

block distance

d-span is a signal of block
allocation problems

App

Alternative 2
End-to-end

performance

We use
d-span

A

B

Complex

Alternative 1
Average

block distance

d-span is a signal of block
allocation problems

App

Alternative 2
End-to-end

performance

We use
d-span

A

B

Complex Confounded

Alternative 1
Average

block distance

d-span is a signal of block
allocation problems

App

Alternative 2
End-to-end

performance

We use
d-span

A

B

Simple
&

Informative Complex Confounded

Alternative 1
Average

block distance

How Chopper works?

experimental
plan

How Chopper works?

experimental
plan

RAM FS

How Chopper works?

experimental
plan

RAM FS

tmp file

How Chopper works?

experimental
plan

RAM FS

looping device

tmp file

How Chopper works?

experimental
plan

File System

RAM FS

looping device

tmp file

How Chopper works?

experimental
plan

Workload

File System

RAM FS

looping device

tmp file

Factors d-span

How Chopper works?

experimental
plan

Workload

File System

RAM FS

looping device

tmp file

Factors d-span

How Chopper works?

experimental
plan

Workload

File System

RAM FS

looping device

tmp file

Factors d-span

How Chopper works?

experimental
plan

Workload

File System

RAM FS

looping device

tmp file

• All operations are in user space
• No kernel modification needed

Part 1
Collect Data

Part 2
Analyze Data

Part 3
Understand File System

Outline

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 8 16 24 32 40 48 56 64
d−span (GB)

C
um

ul
at

ive
 D

en
si

ty

xfs−vanilla
ext4−vanilla

10% of tests on ext4 have
d-span > 10GB

ext4

XFS

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 8 16 24 32 40 48 56 64
d−span (GB)

C
um

ul
at

ive
 D

en
si

ty

xfs−vanilla
ext4−vanilla

10% of tests on ext4 have
d-span > 10GB

ext4

XFS

ext4’s block allocator has a large
performance tail

Factor prioritization shows which
factors influence layout the most

Factor A

d-
sp

an

1 2

Factor B
d-

sp
an

1 2

More importantLess important

Factor prioritization shows which
factors influence layout the most in ext4

CPUCount
FileCount

InternalDensity
UsedRatio

DirectorySpan
FreeSpaceLayout

Fsync
ChunkOrder

Sync
FileSize

DiskSize

0.0 0.2 0.4 0.6
Variance Contribution

Most important

Least important
Importance (Variance Contribution)

Factor prioritization shows which
factors influence layout the most in ext4

CPUCount
FileCount

InternalDensity
UsedRatio

DirectorySpan
FreeSpaceLayout

Fsync
ChunkOrder

Sync
FileSize

DiskSize

0.0 0.2 0.4 0.6
Variance Contribution

Most important

Least important
Importance (Variance Contribution)

Factor prioritization shows which
factors influence layout the most in ext4

CPUCount
FileCount

InternalDensity
UsedRatio

DirectorySpan
FreeSpaceLayout

Fsync
ChunkOrder

Sync
FileSize

DiskSize

0.0 0.2 0.4 0.6
Variance Contribution

Most important

Least important
Importance (Variance Contribution)

Factor prioritization shows which
factors influence layout the most in ext4

CPUCount
FileCount

InternalDensity
UsedRatio

DirectorySpan
FreeSpaceLayout

Fsync
ChunkOrder

Sync
FileSize

DiskSize

0.0 0.2 0.4 0.6
Variance Contribution

Most important

Least important
Importance (Variance Contribution)

Factor prioritization shows which
factors influence layout the most in ext4

CPUCount
FileCount

InternalDensity
UsedRatio

DirectorySpan
FreeSpaceLayout

Fsync
ChunkOrder

Sync
FileSize

DiskSize

0.0 0.2 0.4 0.6
Variance Contribution

Most important

Least important
Importance (Variance Contribution)

Factor prioritization shows which
factors influence layout the most in ext4

CPUCount
FileCount

InternalDensity
UsedRatio

DirectorySpan
FreeSpaceLayout

Fsync
ChunkOrder

Sync
FileSize

DiskSize

0.0 0.2 0.4 0.6
Variance Contribution

Most important

Least important
Importance (Variance Contribution)

Factor prioritization shows which
factors influence layout the most in ext4

CPUCount
FileCount

InternalDensity
UsedRatio

DirectorySpan
FreeSpaceLayout

Fsync
ChunkOrder

Sync
FileSize

DiskSize

0.0 0.2 0.4 0.6
Variance Contribution

Most important

Least important
Importance (Variance Contribution)

Many factors influence
data layout unexpectedly

● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

01
23

01
32

02
13

02
31

03
12

03
21

10
23

10
32

12
03

12
30

13
02

13
20

20
13

20
31

21
03

21
30

23
01

23
10

30
12

30
21

31
02

31
20

32
01

32
10

ChunkOrder

Fs
yn

c

● ●Sometimes bad Always good

Some combinations always
produce good layouts

● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

01
23

01
32

02
13

02
31

03
12

03
21

10
23

10
32

12
03

12
30

13
02

13
20

20
13

20
31

21
03

21
30

23
01

23
10

30
12

30
21

31
02

31
20

32
01

32
10

ChunkOrder

Fs
yn

c

● ●Sometimes bad Always good

Some combinations always
produce good layouts

Good
Region

● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

01
23

01
32

02
13

02
31

03
12

03
21

10
23

10
32

12
03

12
30

13
02

13
20

20
13

20
31

21
03

21
30

23
01

23
10

30
12

30
21

31
02

31
20

32
01

32
10

ChunkOrder

Fs
yn

c

● ●Sometimes bad Always good

Some combinations always
produce good layouts

Factors interact unexpectedly in ext4

Good
Region

Summary of unexpected
behaviors in ext4

Summary of unexpected
behaviors in ext4

Linux ext4 may spread files wider on larger disks

Summary of unexpected
behaviors in ext4

Linux ext4 may spread files wider on larger disks

File size influences d-span more than expected

Summary of unexpected
behaviors in ext4

Linux ext4 may spread files wider on larger disks

File size influences d-span more than expected

Sequential writes can be harmful

Summary of unexpected
behaviors in ext4

Linux ext4 may spread files wider on larger disks

File size influences d-span more than expected

Sequential writes can be harmful

Patterns of sync() and fsync() change layout

Summary of unexpected
behaviors in ext4

Linux ext4 may spread files wider on larger disks

File size influences d-span more than expected

Sequential writes can be harmful

Patterns of sync() and fsync() change layout

Fragmentations and used ratio of disk don’t matter

Summary of unexpected
behaviors in ext4

Linux ext4 may spread files wider on larger disks

File size influences d-span more than expected

Sequential writes can be harmful

Patterns of sync() and fsync() change layout

Fragmentations and used ratio of disk don’t matter

Factors interact when determining data layout

Summary of unexpected
behaviors in ext4

More in the paper

Linux ext4 may spread files wider on larger disks

File size influences d-span more than expected

Sequential writes can be harmful

Patterns of sync() and fsync() change layout

Fragmentations and used ratio of disk don’t matter

Factors interact when determining data layout

Part 1
Collect Data

Part 2
Analyze Data

Part 3
Understand File System

Outline

The unexpected behaviors in ext4 can
be explained by four design issues

Special End Policy

Scheduler Dependency

File Size Dependency

Normalization Bug

in this talk

in this talk

in paper

in paper

Special End Policy

● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

01
23

01
32

02
13

02
31

03
12

03
21

10
23

10
32

12
03

12
30

13
02

13
20

20
13

20
31

21
03

21
30

23
01

23
10

30
12

30
21

31
02

31
20

32
01

32
10

ChunkOrder

Fs
yn

c

● ●Sometimes bad Always good

● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

01
23

01
32

02
13

02
31

03
12

03
21

10
23

10
32

12
03

12
30

13
02

13
20

20
13

20
31

21
03

21
30

23
01

23
10

30
12

30
21

31
02

31
20

32
01

32
10

ChunkOrder

Fs
yn

c
● ●Sometimes bad Always good

Writing and syncing file end
first could avoid poor layout

● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

01
23

01
32

02
13

02
31

03
12

03
21

10
23

10
32

12
03

12
30

13
02

13
20

20
13

20
31

21
03

21
30

23
01

23
10

30
12

30
21

31
02

31
20

32
01

32
10

ChunkOrder

Fs
yn

c
● ●Sometimes bad Always good

Writing and syncing file end
first could avoid poor layout

Write file end first

● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

01
23

01
32

02
13

02
31

03
12

03
21

10
23

10
32

12
03

12
30

13
02

13
20

20
13

20
31

21
03

21
30

23
01

23
10

30
12

30
21

31
02

31
20

32
01

32
10

ChunkOrder

Fs
yn

c
● ●Sometimes bad Always good

Writing and syncing file end
first could avoid poor layout

Call
fsync()
after
first
write

Write file end first

ending

Why layout is bad? The allocator treats
the ending data extent of a file differently

Condition 1: the extent is at the end of the file
Condition 2: the file is closed

A file: non-ending

ending

Why layout is bad? The allocator treats
the ending data extent of a file differently

Condition 1: the extent is at the end of the file
Condition 2: the file is closed

A file:

non-ending

● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

01
23

01
32

02
13

02
31

03
12

03
21

10
23

10
32

12
03

12
30

13
02

13
20

20
13

20
31

21
03

21
30

23
01

23
10

30
12

30
21

31
02

31
20

32
01

32
10

ChunkOrder

Fs
yn

c
● ●Sometimes bad Always good

Why ChunkOrder=3120 and
Fsync=1100 always have good layout?

3 1 2 0
Time

fsync()
1

fsync()
1 0 0

Cond 1 (is end?):
Cond 2 (is closed?):

Special End?

Why ChunkOrder=3120 and
Fsync=1100 always have good layout?

3 1 2 0
Time

fsync()
1

fsync()
1 0 0

✔Cond 1 (is end?):
Cond 2 (is closed?):

Special End?

Why ChunkOrder=3120 and
Fsync=1100 always have good layout?

3 1 2 0
Time

fsync()
1

fsync()
1 0 0

✖
✔Cond 1 (is end?):

Cond 2 (is closed?):
Special End?

Why ChunkOrder=3120 and
Fsync=1100 always have good layout?

3 1 2 0
Time

fsync()
1

fsync()
1 0 0

✖
✔Cond 1 (is end?):

Cond 2 (is closed?):

✖Special End?

Why ChunkOrder=3120 and
Fsync=1100 always have good layout?

3 1 2 0
Time

fsync()
1

fsync()
1 0 0

✖
✔Cond 1 (is end?):

Cond 2 (is closed?):

✖

✖ ✖ ✖

Special End?

Why ChunkOrder=3120 and
Fsync=1100 always have good layout?

3 1 2 0
Time

fsync()
1

fsync()
1 0 0

✖
✔Cond 1 (is end?):

Cond 2 (is closed?):

✖

✖ ✖ ✖

Special End? ✖ ✖ ✖
✱ ✱ ✱

 Special End Policy is never triggered

Why ChunkOrder=3120 and
Fsync=1100 always have good layout?

3 1 2 0
Time

fsync()
1

fsync()
1 0 0

✖
✔Cond 1 (is end?):

Cond 2 (is closed?):

✖

✖ ✖ ✖

Special End? ✖ ✖ ✖
✱ ✱ ✱

Special End Policy

Fix
Treat non-ending and ending extents equally

Lesson Learned

Policies for different circumstances should be
harmonious with one another

Scheduler Dependency

6% of d-spans are different
in two repeated experiments

16384 tests

6%

Up to 44GB difference on a 64GB disk

16384 tests

6%

6% of d-spans are different
in two repeated experiments

16384 tests

6%

Up to 44GB difference on a 64GB disk

16384 tests

6%

Data layout can be random

Data layouts of small files
depend on OS scheduler

CPU0

Reserved Space
for CPU0

Disk

flushing thread

Data layouts of small files
depend on OS scheduler

CPU0

Reserved Space
for CPU0

Disk

flushing thread

CPU0

Reserved Space
for CPU0

Disk

CPU1

Reserved Space
for CPU1

flushing thread

CPU0

Reserved Space
for CPU0

Disk

CPU1

Reserved Space
for CPU1

flushing thread

Scheduler Dependency
Fix

Choose locations based on inode number,
instead of CPU id

Lesson Learned

Policies should not depend on environmental
factors that may change and are outside the

control of the file system

Special End Policy

Scheduler Dependency

File Size Dependency

Target locations depend on dynamic file size

Normalization Bug

Block allocation request are not correctly
adjusted

Issues found and fixed

just covered

in paper

in paper

just covered

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 8 16 24 32 40 48 56 64
d−span (GB)

C
um

ul
at

ive
 D

en
si

ty

Final
Vanilla

Removing the issues significantly
cuts tail size of d-span distribution

Before

After

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 8 16 24 32 40 48 56 64
d−span (GB)

C
um

ul
at

ive
 D

en
si

ty

Final
Vanilla

Removing the issues significantly
cuts tail size of d-span distribution

Before

After

Our fixes improve ext4’s data layout

Write

● ● ● ●
●

●

●

●

0

500

1000

1500

2 4 8 16
Number of Creating Threads

W
rit

e
Ti

m
e

(m
s)

But, do our fixes reduce
latencies?

Before

After

U
pd

at
e

Ti
m

e
(m

s)

Write

● ● ● ●
●

●

●

●

0

500

1000

1500

2 4 8 16
Number of Creating Threads

W
rit

e
Ti

m
e

(m
s)

But, do our fixes reduce
latencies?

Before

After

U
pd

at
e

Ti
m

e
(m

s)

Write

● ● ● ●
●

●

●

●

0

500

1000

1500

2 4 8 16
Number of Creating Threads

W
rit

e
Ti

m
e

(m
s)

But, do our fixes reduce
latencies?

1.4 sec
Before

After

U
pd

at
e

Ti
m

e
(m

s)

Write

● ● ● ●
●

●

●

●

0

500

1000

1500

2 4 8 16
Number of Creating Threads

W
rit

e
Ti

m
e

(m
s)

But, do our fixes reduce
latencies?

1.4 sec
Before

After

Our fixes reduce tail latencies

U
pd

at
e

Ti
m

e
(m

s)

Conclusions
• Statistical techniques are practical
• Found and fixed four allocation issues in ext4
• Our fixes ▶ better layouts ▶ lower latency at a node  

 ▶ lower latency at scale
• Lessons learned

• Policies should be harmonious
• Policies should not depend on environmental factors

Conclusions
• Statistical techniques are practical
• Found and fixed four allocation issues in ext4
• Our fixes ▶ better layouts ▶ lower latency at a node  

 ▶ lower latency at scale
• Lessons learned

• Policies should be harmonious
• Policies should not depend on environmental factors

Rigorous statistics will help to reduce unexpected
issues caused by intuitive but unreliable design decisions

Thanks!

Source code and data

http://research.cs.wisc.edu/adsl/Software/chopper/

http://research.cs.wisc.edu/adsl/Software/chopper/

