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Software techniques that tolerate latency
variability are vital to building responsive
large-scale Web services.

BY JEFFREY DEAN AND LUIZ ANDRE BARROSO

The Tail
at Scale

SYSTEMS THAT RESPOND to user actions quickly (within
100ms) feel more fluid and natural to users than
those that take longer.’ Improvements in Internet
connectivity and the rise of warehouse-scale computing
systems” have enabled Web services that provide fluid
responsiveness while consulting multi-terabyte datasets
spanning thousands of servers; for example, the Google
search system updates query results interactively as
the user types, predicting the most likely query based
on the prefix typed so far, performing the search and
showing the results within a few tens of milliseconds.
Emerging augmented-reality devices (such as the
Google Glass prototype’) will need associated Web
services with even greater responsiveness in order to
guarantee seamless interactivity.

It is challenging for service providers to keep the tail
of latency distribution short for interactive services
as the size and complexity of the system scales up or
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as overall use increases. Temporary
high-latency episodes (unimportant in
moderate-size systems) may come to
dominate overall service performance at
largescale. Justas fault-tolerant comput-
ingaims to create a reliable whole out of
less-reliable parts, large online services
need to create a predictably responsive
whole out of less-predictable parts;
we refer to such systems as “latency
tail-tolerant,” or simply “tail-tolerant.”
Here, we outline some common causes
for high-latency episodes in large online
services and describe techniques that
reduce their severity or mitigate their
effect on whole-system performance.
In many cases, tail-tolerant techniques
can take advantage of resources already
deployed to achieve fault-tolerance, re-
sulting in low additional overhead. We
explore how these techniques allow sys-
tem utilization to be driven higher with-
out lengthening the latency tail, thus
avoiding wasteful overprovisioning.

‘Why Variability Exists?

Variability of response time that leads
to high tail latency in individual com-
ponents of a service can arise for many
reasons, including:

Shared resources. Machines might
be shared by different applications
contending for shared resources (such
as CPU cores, processor caches, mem-
ory bandwidth, and network band-
width), and within the same applica-
tion different requests might contend
for resources;

Daemons. Background daemons
may use only limited resources on aver-
age but when scheduled can generate
multi-millisecond hiccups;

n key insights

= Even rare performance hiccups affect
asignificant fraction of all requests In
large-scale distributed systems.

= Eliminating all sources of latency

variability in large-scale systems

Is impractical, especially in shared

environments.

Using an approach analogous to

fault-tolerant computing, tail-tolerant

software techniques form a predictable

whole out of less-predictable parts.

“Temporary high-latency episodes (unimportant in
moderate-size systems) may come to dominate overall
service performance at large scale.”
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Uncommon tail latencies
become common at scale

Important to avoid long latencies at
every node in the data center
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FS FS FS FS FS

Important to avoid long latencies In

local file systems




Chopper discovers high-
latency operations in local FS

Local FS

Goal

Find problematic corner cases in

file system block allocator
- Challenge

File system input space is huge




Chopper explores file systems
by statistical techniques



Chopper explores file systems
by statistical techniques

We provide an overall analysis of file system
block allocations (XFS, ext4)



Chopper explores file systems
by statistical techniques

We provide an overall analysis of file system
block allocations (XFS, ext4)

We have analyzed unexpected behaviors in detail



Chopper explores file systems
by statistical techniques

We provide an overall analysis of file system
block allocations (XFS, ext4)

We have analyzed unexpected behaviors in detail

We have found and fixed four allocation issues in
ext4 and significantly improved layout quality
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- Explores space evenly
- Aids visualization

- Explores interactions between factors well

16384 samples, 30 mins with 32 machines
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How Chopper works?

- All operations are in user space

- No kernel modification needed
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10% of tests on ext4 have
d-span > 10GB

ext4’s block allocator has a large
performance tail

| |
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Factor prioritization shows which
factors influence layout the most in ext4

DiskSize -

FileSize -

Sync -
ChunkOrder -
Fsync -
FreeSpacelayout -
DirectorySpan -
UsedRatio -
InternalDensity -

Many factors influence

FileCount - data layout unexpectedly
CPUCount -
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Summary of unexpected
behaviors In ext4

Linux ext4 may spread files wider on larger disks
File size influences d-span more than expected
Sequential writes can be harmful

Patterns of sync () and £sync () change layout
Fragmentations and used ratio of disk don’t matter

Factors interact when determining data layout

More In the paper
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The unexpected behaviors in ext4 can
be explained by four design issues

Special End Policy
Scheduler Dependency
File Size Dependency in paper

Normalization Bug in paper
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Writing and syncing file end
first could avoid poor layout
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Why layout is bad? The allocator treats
the ending data extent of a file differently

Condition 1: the extent is at the end of the file
Condition 2: the file is closed

A file: __ending
- >




Why layout is bad? The allocator treats
the ending data extent of a file differently

Condition 1: the extent is at the end of the file
Condition 2: the file is closed

A file:

_ >




Always good

® Sometimes bad

1 1 1T 1T 1T T T 1T 1T 71T 7T 717°T1T°T11
—TO~TrO OO O ~O+~0+0O

110
101
101

o 100
€ 100
n

111
111
110
011
010
010
001
001
000
000

L 011



Why ChunkOrder=3120 and
Fsync=1100 always have good layout?

Cond 1 (is end?):
Cond 2 (is closed?):

Special End?

fsync() fsync()
1 1 0 0



Why ChunkOrder=3120 and
Fsync=1100 always have good layout?

Cond 1 (isend?): ¢/
Cond 2 (is closed?):

Special End?

fsync() fsync()
1 1 0 0



Why ChunkOrder=3120 and
Fsync=1100 always have good layout?

Cond 1 (isend?): ¢
Cond 2 (is closed?): ) 4

Special End?

fsync() fsync()
1 1 0 0



Why ChunkOrder=3120 and
Fsync=1100 always have good layout?

Cond 1 (isend?): ¢
Cond 2 (is closed?): ) 4

Special End? x

fsync() fsync()
1 1 0 0



Why ChunkOrder=3120 and
Fsync=1100 always have good layout?

X X X

Cond 1 (is end?): ¢/
Cond 2 (is closed?): ) 4

Special End? x

............. TTTT ime

fsync() fsync()




Why ChunkOrder=3120 and
Fsync=1100 always have good layout?
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Why ChunkOrder=3120 and
Fsync=1100 always have good layout?
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Cond 1 (is end?): ¢

Cond 2 (is closed?): ) 4 X K X
Special End? x x x x
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............. TTTT Time

fsync() fsync()

Special End Policy is never triggered



Special End Policy

Fix
Treat non-ending and ending extents equally

Lesson Learned

Policies for different circumstances should be
harmonious with one another



Scheduler Dependency
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6% of d-spans are different
In two repeated experiments

16384 tests 16384 tests

Up to 44GB difference on a 64GB disk

Data layout can be random
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flushing thread %...

Reserved Space Reserved Space
for CPUO for CPU1




flushing thread

Reserved Space Reserved Space
for CPUO for CPU1




Scheduler Dependency

Fix
Choose locations based on inode number,
instead of CPU id

Lesson Learned

Policies should not depend on environmental
factors that may change and are outside the
control of the file system



Issues found and fixed

Special End Policy
Scheduler Dependency
File Size Dependency in paper
Target locations depend on dynamic file size

Normalization Bug in paper

Block allocation request are not correctly
adjusted
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Our fixes improve ext4d’s data layout
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Our fixes reduce tail latencies
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Conclusions

- Statistical techniques are practical
- Found and fixed four allocation issues In ext4

* Our fixes » better layouts » lower latency at a node
» lower latency at scale

- Lessons learned
- Policies should be harmonious
- Policies should not depend on environmental factors

Rigorous statistics will help to reduce unexpected

iIssues caused by intuitive but unreliable design decisions



Source code and data

http://research.cs.wisc.edu/adsl/Software/chopper/

Thanks!
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