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“Temporary high-latency episodes (unimportant in 
moderate-size systems) may come to dominate overall 

service performance at large scale.”
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Uncommon tail latencies 
become common at scale

Important to avoid long latencies at 
every node in the data center
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Important to avoid long latencies in 
local file systems



Chopper discovers high-
latency operations in local FS

Local FS

Block
Allocator

Goal
Find problematic corner cases in 

file system block allocator

Challenge
File system input space is huge
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Chopper explores file systems 
by statistical techniques

We provide an overall analysis of file system 
block allocations (XFS, ext4)

We have analyzed unexpected behaviors in detail

We have found and fixed four allocation issues in 
ext4 and significantly improved layout quality
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What values to pick for the 
factors?

• Disk Size
• Used Ratio
• Fragmentation
• CPU Count

• File Size
• Chunk Count
• Internal Density
• Chunk Order
• Fsync
• Sync
• File Count
• Directory Span

1,2,4,..64GB 8,16,..256KB

After refining,  
250 years to explore all combinations

File System Workload
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• Aids visualization
• Explores interactions between factors well

16384 samples, 30 mins with 32 machines
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Factors d-span

How Chopper works?

experimental 
plan

Workload

File System

RAM FS

looping device

tmp file

• All operations are in user space 
• No kernel modification needed



Part 1
Collect Data

Part 2
Analyze Data

Part 3
Understand File System

Outline



0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 8 16 24 32 40 48 56 64
d−span (GB)

C
um

ul
at

ive
 D

en
si

ty

xfs−vanilla
ext4−vanilla

10% of tests on ext4 have 
d-span > 10GB

ext4

XFS



0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 8 16 24 32 40 48 56 64
d−span (GB)

C
um

ul
at

ive
 D

en
si

ty

xfs−vanilla
ext4−vanilla

10% of tests on ext4 have 
d-span > 10GB

ext4
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ext4’s block allocator has a large 
performance tail



Factor prioritization shows which 
factors influence layout the most 

Factor A

d-
sp

an

1           2

Factor B
d-

sp
an

1           2

More importantLess important



Factor prioritization shows which 
factors influence layout the most in ext4 

CPUCount
FileCount

InternalDensity
UsedRatio

DirectorySpan
FreeSpaceLayout

Fsync
ChunkOrder

Sync
FileSize

DiskSize

0.0 0.2 0.4 0.6
Variance Contribution

Most important

Least important
Importance (Variance Contribution)



Factor prioritization shows which 
factors influence layout the most in ext4 

CPUCount
FileCount

InternalDensity
UsedRatio

DirectorySpan
FreeSpaceLayout

Fsync
ChunkOrder

Sync
FileSize

DiskSize

0.0 0.2 0.4 0.6
Variance Contribution

Most important

Least important
Importance (Variance Contribution)



Factor prioritization shows which 
factors influence layout the most in ext4 

CPUCount
FileCount

InternalDensity
UsedRatio

DirectorySpan
FreeSpaceLayout

Fsync
ChunkOrder

Sync
FileSize

DiskSize

0.0 0.2 0.4 0.6
Variance Contribution

Most important

Least important
Importance (Variance Contribution)



Factor prioritization shows which 
factors influence layout the most in ext4 

CPUCount
FileCount

InternalDensity
UsedRatio

DirectorySpan
FreeSpaceLayout

Fsync
ChunkOrder

Sync
FileSize

DiskSize

0.0 0.2 0.4 0.6
Variance Contribution

Most important

Least important
Importance (Variance Contribution)



Factor prioritization shows which 
factors influence layout the most in ext4 

CPUCount
FileCount

InternalDensity
UsedRatio

DirectorySpan
FreeSpaceLayout

Fsync
ChunkOrder

Sync
FileSize

DiskSize

0.0 0.2 0.4 0.6
Variance Contribution

Most important

Least important
Importance (Variance Contribution)



Factor prioritization shows which 
factors influence layout the most in ext4 

CPUCount
FileCount

InternalDensity
UsedRatio

DirectorySpan
FreeSpaceLayout

Fsync
ChunkOrder

Sync
FileSize

DiskSize

0.0 0.2 0.4 0.6
Variance Contribution

Most important

Least important
Importance (Variance Contribution)



Factor prioritization shows which 
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CPUCount
FileCount

InternalDensity
UsedRatio

DirectorySpan
FreeSpaceLayout

Fsync
ChunkOrder

Sync
FileSize

DiskSize

0.0 0.2 0.4 0.6
Variance Contribution

Most important

Least important
Importance (Variance Contribution)

Many factors influence 
data layout unexpectedly 
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Summary of unexpected 
behaviors in ext4

More in the paper

Linux ext4 may spread files wider on larger disks

File size influences d-span more than expected
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The unexpected behaviors in ext4 can 
be explained by four design issues

Special End Policy

Scheduler Dependency

File Size Dependency

Normalization Bug

in this talk

in this talk

in paper

in paper
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Writing and syncing file end 
first could avoid poor layout

Call
fsync()
after 
first
write

Write file end first
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A file: non-ending
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✖
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 Special End Policy is never triggered 

Why ChunkOrder=3120 and 
Fsync=1100 always have good layout?

3 1 2 0
Time

fsync()
1

fsync()
1 0 0

✖
✔Cond 1 (is end?): 

Cond 2 (is closed?):

✖

✖ ✖ ✖

Special End? ✖ ✖ ✖
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Special End Policy

Fix
Treat non-ending and ending extents equally

 
Lesson Learned

Policies for different circumstances should be 
harmonious with one another



Scheduler Dependency
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6% of d-spans are different 
in two repeated experiments

16384 tests

6%

Up to 44GB difference on a 64GB disk

16384 tests

6%

Data layout can be random
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CPU0

Reserved Space 
for CPU0

Disk

CPU1

Reserved Space 
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flushing thread



Scheduler Dependency
Fix

Choose locations based on inode number, 
instead of CPU id

 
Lesson Learned

Policies should not depend on environmental 
factors that may change and are outside the 

control of the file system



Special End Policy

Scheduler Dependency

File Size Dependency

Target locations depend on dynamic file size 

Normalization Bug

Block allocation request are not correctly 
adjusted

Issues found and fixed

just covered

in paper

in paper

just covered
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Our fixes improve ext4’s data layout
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• Statistical techniques are practical 
• Found and fixed four allocation issues in ext4
• Our fixes ▶  better layouts ▶  lower latency at a node  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• Lessons learned

• Policies should be harmonious
• Policies should not depend on environmental factors



Conclusions
• Statistical techniques are practical 
• Found and fixed four allocation issues in ext4
• Our fixes ▶  better layouts ▶  lower latency at a node  

                                              ▶  lower latency at scale
• Lessons learned

• Policies should be harmonious
• Policies should not depend on environmental factors

Rigorous statistics will help to reduce unexpected
issues caused by intuitive but unreliable design decisions



Thanks!

Source code and data

http://research.cs.wisc.edu/adsl/Software/chopper/

http://research.cs.wisc.edu/adsl/Software/chopper/

