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Leading Research Requires the Use of  
Extreme-scale Resources across DOE  

•  Big Data Challenges in Science Domains 
•  Extreme-scale Resources 

–  Computational facilities – ALCF, NERSC, and OLCF 
•  1 exabyte generated per year by 2018   

•  Coupling data  
–  Is to combine two different data sets physically stored on  

different institutes to use for big data analysis purpose 

•  Many examples of coupling data today:  
–  Nuclear interaction datasets generated at NERSC needed at the OLCF for Petascale 

simulation  

–  Climate simulations run at ALCF and OLCF validated with BER data sets at ORNL data 
centers  

Unfortunately data-sets do not exist in isolation! 	
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Enabling Network Technology  

•  DOE’s Energy Science Network (Esnet) 
–  Network infrastructure between many DOE facilities 

•  Improved data transfer rate 
–  Currently at 100Gb/s, mostly likely to support 400Gb/s  
–  1Tb/s in near future 

However, this network improvement only 
contributes the network transfer rate.	


Data sets are stored at slow storage systems.	
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OLCF center-wide PFS and clients 
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The PFS can become the bottleneck for data transfers.	
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Problem and Challenge 

Data transfer nodes (DTNs) are a focal point for impedance match 
between the faster networks and the relatively slower storage 
systems (PFS).	
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Key Question  

How to improve the underutilized PFS bandwidth ���
for big data transfers?	
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General Parallel File Systems 

•  Parallel File Systems   
–  Lustre, IBM’s GPFS, PVFS, PanFS 

•  Lustre 
–  Two types of servers 

•  MDS and OSS 

–  Metadata server (MDS) 
•  Holds the directory tree 
•  Stores metadata about each file (except for size) 
•  Once file is opened, I/O to file does not involve the MDS 

–  Object storage server (OSS) 
•  Manages OSTs (disk/LUN) 
•  OSTs hold stripes of the file contents 

– Think RAID0 
•  Maintains the locking for the file contents it is responsible for 
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Observation form the PFS 

PFS is viewed as a single name space.	


However, traditional data transfer tools do 
not fully utilize the available parallelism on 

the PFS for I/Os.	


However it is not a single disk, but the arrays 
of multiple disks with servers.	


PFS has been designed for parallel I/Os. 	
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Problem(1): Traditional File Based Approach 

•  Ignoring file layout information  
•  A complete file can be assigned to each thread, and each thread works 

on the file until the file is read. 
–  Multiple threads can interfere each other on accessing the same OST. 
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Problem(2): Traditional File Based Approach 

•  Ignoring file layout information  
•  Multiple threads can work on a single file.  

–  The parallelism can be limited by a stripe width of a file in the PFS.  
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Bulk Data Movement Software 

•  GridFTP 
–  Requires Globus Toolkit 
–  Supports multiple I/O threads, but it implements a file based approach 

•  bbcp 
–  The most popular data transfer tool for convenience reason, not for performance 
–  Implements a file based approach 

•  RFTP [SC’11]  
–  It is a file based approach, not fully utilizing underlying object layouts on the PFS 

•  SCP  
–  A single thread secure copy tool 

None of these tools are optimized for fully 
utilizing the parallelism on PFS for big data 

transfers.	
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Traditional file transfers tools employ a logical view of files.	


On the other hand, 	

	

       LADS uses the physical view of files, instead of a logical ���
       view of files. 	


LADS can understand 
–  The physical layout of files in which files are composed of data objects 
–  The set of storage targets that hold the objects 
–  The topology of storage servers and targets 
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Solution: Object Based Approach  

•  Aware of file layout information  
•  A thread can work on any slice (object) on any OST. 
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LADS: Design Goals 
 
 

Parallelism on Multi-core CPUs 

Portability for Modern Network Technologies 

Parallelism on PFS 

HotSpot/Congestion Avoidance 

End-to-End Data Transfer Optimization  
Solving the impedance mismatch problem between the faster network and 

slower storage system 
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Common Communication Interface 

• A new generic, communication abstraction layer 
–  A network Application Programming Interface (API) for inter-process  

communication  

• Design goals 
–  Portability, Scalability, Performance,  
    Robustness, Simplicity 
 

• Network solutions that CCI is  
currently supporting 

•  Sockets (TCP, UDP), verbs (InifiBand, RoCE, iWarp),  
   Cray uGNI, and a high-performance kernel-level Ethernet 

[CCI HOTI’11] S. Atchley, D. Dillow, G. Shipman, P. Geoffray, J. Squyres, G. Bosilca and R. Minnich,  
“The Common Communication Interface (CCI)”  
In the Proceedings of 19th IEEE Symposium on High Performance Interconnects (HOTI), 2011.  
CCI Website: http://cci-forum.com` 
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LADS Architecture Overview 
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LADS: Transferring Data at Source 
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LADS: Congestion-Aware Algorithm 

•  Minimizing impact of intermittent congestion on storage servers 
•  Implemented a threshold-based reactive algorithm using  

–  a preset value (object reading or writing time) for determining congested server 
–  the number of skips on the congested servers 
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LADS: Source-based Buffering on NVM 

•  Source’s RMA buffer full 
–  The RMA buffer at source can be full if the sink is experiencing wide-spread congestion. 
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Test-bed Configuration  
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Workloads 

•  File size distribution for a snapshot taken from the Spider-I file system  
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•  85% of the files are less than 1MB and less than 15% of the files are 
greater than 1MB. 

•  The larger files occupy most of the file system space.  



25 

 0

 100

 200

 300

 400

 500

 600

 700

 800

1 2 4 8
 0

 200

 400

 600

 800

 1000

C
P
U
 
U
t
i
l
i
z
a
t
i
o
n
 
(
%
)

M
e
m
 
U
s
a
g
e
 
(
M
B
)

io threads(LADS) (#)

10,000 x 1MB File Transfer

lads-src-cpu
lads-sink-cpu
lads-src-mem

lads-sink-mem

 0

 50

 100

 150

 200

 250

 300

1 2 4 8

T
r
a
n
s
f
e
r
 
R
a
t
e
 
(
M
B
/
s
)

io threads(LADS)/streams(bbcp)(#)

10,000 x 1MB File Transfer

LADS
bbcp

Small Files 

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

1 2 4 8

T
r
a
n
s
f
e
r
 
R
a
t
e
 
(
M
B
/
s
)

io threads(LADS)/streams(bbcp)(#)

100 x 1GB File Transfer

LADS
bbcp

 0

 100

 200

 300

 400

 500

 600

 700

 800

1 2 4 8
 0

 200

 400

 600

 800

 1000

C
P
U
 
U
t
i
l
i
z
a
t
i
o
n
 
(
%
)

M
e
m
 
U
s
a
g
e
 
(
M
B
)

io threads(LADS) (#)

10,000 x 1MB File Transfer

lads-src-cpu
lads-sink-cpu
lads-src-mem

lads-sink-mem

Comparison of  LADS and bbcp 

•  Performance 

Big Files 

Big Files Small Files 

•  Resource Utilization  



26 

LADS with Storage in Contention 

•  Evaluation of storage congestion-aware algorithm in LADS 

(b) Sink storage congested (a) Source storage congested 
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More Experiments - Summary 

•  Effectiveness of the use of flash buffering at source 
–  Throughputs increases as the available memory for communication at the source 

increases.  
–  Doubling the size of DRAM is very expensive and the same throughput could be 

achieved using flash memory cheaper than DRAM.  

•  Evaluation between DTNs at ORNL 
–  For this experiment, both LADS and bbcp uses Sockets (LADS uses a CCI setup 

to use its TCP transport). 
–  LADS shows 6.8 times higher data transfer rate than bbcp. 
–  bbcp shows slightly higher in throughput than LADS for a single thread.  
–  In bbcp, I/O parallelism is limited to a stripe width of a file in Lustre (which is four in 

our evaluation).  

Threads (#) 1 2 4 8 

LADS 58.71 116.30 228.38 407.02 

bbcp 59.91 58.46 57.85 59.49 

Throughput comparison (MB/s) 
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Summary 

I.  We identified multiple bottlenecks that exist along the end-to-end data transfer 
from source and sink host systems.  

II.  We developed LADS to demonstrate techniques that can alleviate some end-to-
end bottlenecks while at the same time, negatively impact the use of the PFS by 
other resources. 

III.  We investigated three I/O optimization techniques: I/O slicing, layout-aware and 
congestion-aware I/O scheduling, and source-side SSD buffering.  

Parallel 
File System 

Parallel 
File System 

Streaming 
Neutron Experiment 

Data 

Simulation Data 

WAN 



29 

Our Vision 

•  An optimized end-to-end virtual path from any source to any sink 
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