
GearDB: A GC-free Key-Value Store on HM-SMR
Drives with Gear Compaction

Ting Yao1,2, Jiguang Wan1, Ping Huang2, Yiwen Zhang1, Zhiwen Liu1

Changsheng Xie1, and Xubin He2

1Huazhong University of Science and Technology, China
2Temple University, USA

Outline

• Background and Motivation
Why do we run KV stores on SMR drives?

Challenges

• GearDB

• Evaluation

• Conclusion

2

SMR Drives
• Shingled Magnetic Recording (SMR)

Increasing disk areal density

• Properties:
 Overlapping tracks

 Zones

 Free read

 Random write complexity

 Sequential write is preferred : Log-structured

• Types: Drive-managed (DM-SMR), Host-aware (HA-SMR), and Host-
managed (HM-SMR)

3

Track N

Track N+1

Track N+2

Track N+3

W
rite

r

Rd

Zone

Host-managed SMR Drives (HM-SMR)

• Advantages:
 Large capacity

Low total cost of ownership (TCO)

Predictable performance

• Seagate: 13TB Seagate ST13125NM007 (Test Drive)

Exos X14 14TB 512E SATA HM-SMR

• West Digital:15 TB Ultrastar DC HC620 SMR Hard Drive

4

HM-SMR Drives

• Best For Applications
 Write data sequentially

 Read data randomly

 Require predictable performance

 Control of how data is handled

• Application domains:
 Social media, cloud storage, life sciences…

5

LSM-tree based Key-value stores

• Applications :

• Properties:
 Batched sequential writes: high write throughput

 Fast read

 Fast range queries

• NoSQL: concerns predictable performance

• Trend: increasing demand on KV store’s capacity
6

KV stores on HM-SMR

LSM-tree based KV stores

• Batched sequential write

• Good for hard disk drives

• Demand large capacity

• Concern predictable
performance

HM-SMR drives

• Require sequential writes

• Provide large capacity

• Predictable performance

• Low total cost of ownership
(TCO)

7

KV stores on HM-SMR

LSM-tree based KV stores

• Batched sequential write

• Good for hard disk drives

• Demand large capacity

• Concern predictable
performance

HM-SMR drives

• Require sequential writes

• Provide large capacity

• Predictable performance

• Low total cost of ownership
(TCO)

8

SMORE form NetApp [MSST ’17];

SMR based key-value store from

Huawei [SDC’15];

Outline

• Background and Motivation
Why do we run KV stores on SMR drives?

Challenge

• GearDB

• Evaluation

• Conclusion

9

Redundant Cleaning Processes

L2

L1

Ln

L0

Memory

Disk

Cm

SSTable

 HM-SMR

Zone 1 Zone 2 Li

L0 L1 L1 L2 L0 L2 Ln Ln L1

• Log structured write on HM-SMR drives:
SSTables form different levels with different compaction frequencies

are mixed in a same zone.

Redundant Cleaning Processes

L2

L1

Ln

L0

Memory

Disk

Cm

SSTable

 HM-SMR

Zone 1 Zone 2 Li

L0 L1 L1 L2 L0 L2 Ln Ln L1 L2 L2

R
e

ad

Merge & Sort

L2

1. Compaction in LSM-trees
cleans invalid KV items

2. Garbage collections on HM-SMR drives
clean invalid SSTables on Disks

Goals of GearDB

L2

L1

Ln

L0

Memory

Disk

Cm

SSTable

 HM-SMR

Zone 1 Zone 2 Li

L0 L1 L1 L2 L0 L2 Ln Ln L1 L2 L2
R

e
ad

Merge & Sort

L2

1. Compaction in LSM-trees
cleans invalid KV items

2. Garbage collections on HM-SMR drives
clean invalid SSTables on Disks

Improve compaction
efficiency

Motivational tests

• LevelDB on an HM-SMR drive with two GCs
Ldb-Greedy: Zones with the most invalid data

Ldb-Cost Benefits: Zones with the oldest age and the lowest space utilization

• Trigger GC: free space under 20%

• Migrating valid data from one zone to another.

Randomly loading an 80 GB dataset to restricted disk space

(Making valid data takes 80% of the disk space)

13

Overhead of on-disk GC

• Record the valid data volume and
time consumption of GCs in every
ten minutes.

• 50% of the execution time is spent
on GCs when valid data volume is
70% of disk space.

• Garbage collections take a
substantial proportion of the
system execution time.

• Degrade system performance.

14

Poor Space Utilization

15

• 85% of zones have a zone space utilization
ranges from 45% to 80%.

(Zone Space Utilization =
Valid 𝑑𝑎𝑡𝑎 𝑣𝑜𝑙𝑢𝑚𝑒

𝑧𝑜𝑛𝑒 𝑠𝑖𝑧𝑒
)

• Overall disk space utilization: 60%

(Space Utilization =
𝑉𝑎𝑙𝑖𝑑 𝑑𝑎𝑡𝑎 𝑣𝑜𝑙𝑢𝑚𝑒

𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 𝑑𝑖𝑠𝑘 𝑠𝑝𝑎𝑐𝑒
)

500

600

700

800

900

1000

1100

1200

50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

O
p

e
ra

ti
o

n
s/

s
Disk space utilization

Ldb-CB

Ldb-Greedy

• Changing the threshold of GCs, we will
get different space utilization.

• System performance decreases with
disk space utilization.

16

GearDB：an LSM-tree based KV store on HM-SMR
drives aims to achieve both high performance and
space efficiency.

GCs bring large overhead Poor space utilization System performance degrades with

the increase of disk space utilization

Outline

• Background and Motivation
Why do we run KV stores on SMR drives?

Challenges

• GearDB

• Evaluation

• Conclusion

17

Overall Architecture

18

• New disk layout
Mitigate fragments

• Compaction Window
Restrict compactions and

fragments in CWs

• Gear compaction
Clean zones automatically

HM-controller

LSM-trees

GearDB
Compaction window

A New On-disk Data Layout

Gear Compaction

T10 Zone Block Command

HM-SMR
(Zone Block Device)

 L0 L0

Zone 1 Zone 2 Zone 3

L0 L1 L1 L1 L2 L2 L2 Ln Ln Ln

Zone 4

New disk layout

19

• Key idea: Each zone only serves

SSTables from one level.

• Each level has multiple zones.

• SSTables in a zone share similar age

and same compaction frequency

• Less fragmented disk space

L0

L1

Ln

LSM-tree

L2

L3

L0 L1 L2 L3 Ln HM-SMR

Zone of Li

CW in Li

SSTable in Li

ZBC/ZAC Interface

L2

Compaction window (CW)

20

• For each level, a group of zones are
selected rotationally to construct a
compaction window.

• Each level has a CW.

• A CW contains a group of zones of one
level. (e.g., k=4)

𝑆𝑐𝑤𝑖 =
1

𝑘
× 𝐿𝐿𝑖 (1 ≤ 𝑘 ≤ 𝐴𝐹)

• CW is used to restrict compactions
and fragments.

L0

L1

Ln

LSM-tree

L2

L3

L0 L1 L2 L3 Ln HM-SMR

Zone of Li

CW in Li

SSTable in Li

ZBC/ZAC Interface

L2L0 L1

Gear compaction

21

L0

L1

L2

L3

SSTable on disks

Sorted data in memory

• Gear compaction aims to automatically clean compaction
windows by conducting compaction only within CWs.

*Here we only show SSTables in each level’s
compaction window.

Gear compaction

22

• Step 1:
 Fetch compaction data into memory

 Merge and sort

 Divide the resultant data into three parts

Out_cw Li, In_cw Li, and Out Li

L0

L1

L2

L3

SSTable on disks

Sorted data in memory
1

In_cw
L2

Out_cw
L2

Out
L2

Gear compaction

23

• Out_cw Li : data overlapped with some SSTables that are out of Li’s
compaction window

• Step 2: write data Out_cw L2 back to L1

L0

L1

L2

L3

SSTable on disks

Sorted data in memory
1

In_cw
L2

Out_cw
L2

Out
L2

Out_cw
L2

2

Gear compaction

24

• Out Li : data does not overlap any SSTables in Li

• Step 3: dump data Out L2 to L2 to reduce further compactions

L0

L1

L2

L3

SSTable on disks

Sorted data in memory
1

In_cw
L2

Out_cw
L2

Out
L2

Out_cw
L2

2
3

Out
L2

Gear compaction

25

• In_cw Li: data overlapped with some SSTables in Li’s CW

• Step 4: Compact the data In_cw L2 with the overlapped SSTables in

L2’s CW

L0

L1

L2

L3

SSTable on disks

Sorted data in memory
1

In_cw
L2

Out_cw
L2

Out
L2

Out_cw
L2

2
3

Out
L2

4

In_cw
L2

Out_cw
L3

Out
L3

In_cw
L3

Gear compaction

26

• Proceed recursively in compaction windows, level by level.

• Stop when compactions reach the highest level or resultant data does
not overlap the CW in the next level.

L0

L1

L2

L3

SSTable on disks

Sorted data in memory
1

Out_cw
L2

2
3

Out
L2

4

In_cw
L2

Out_cw
L3

Out
L3

In_cw
L3

6

Out
L3

5

Out_cw
L3

In_cw
L3

Automatically reclaim CWs

27

• Gear compactions only proceed within CWs

• Invalid data is restricted within CWs

• Zones filled with invalid data can be reused as empty zones

• GearDB reclaims CWs automatically with gear compactions

Reclaim CWs in a Gear fashion

28

• A gear represents a level (Li)

• A sector is a compaction window

• A single move of a gear: reclaiming zones in
a CW by compaction

• A full round move of a gear: reclaiming all
zones in Li by compaction

• Reclaim all CWs in Li -> clean one CW in Li+1

• A full round moving of a gear -> one move
in the driven gear

Li

Li+1

A Compaction window in Li

Li+2

Ln

Evaluation Setup
• Comparisons

 GearDB

 Ldb-Greedy: LevelDB with greedy GCs

 Ldb-CB: LevelDB with cost-benefit GCs

• Test environment

29

Linux 64-bit Linux 4.15.0-34-generic

CPU 8 * Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz

Memory 32 GB

HM-SMR 13TB Seagate ST13125NM007
Random 4 KB request (IOPS): 163(R)
Sequential (MB/s): 180(R), 178(W)

Defaults Key size=16 bytes, Value size = 4 KB, SSTable size = 4 MB

What has GearDB achieved?

30

• Random load an 80 GB dataset
• Random Load performance: 1.7× higher than LevelDB
• Space Utilization: 90%
 High random load performance and space efficiency

Write and Read Performance

31

Random Write:
1.71× faster than
Ldb-Greedy
1.73× faster than
Ldb-CB

Sequential Write:
1.37× faster than
Ldb-Greedy
1.39× faster than
Ldb-CB

Random Read Sequential Read

Why does GearDB perform better?

32

• Break down the random load
time into different operations

Eliminate device level GCs
More efficient compaction

Compaction Efficiency

33

• The latency of each compaction during the random loading.
 Reduce over 5000 compactions.
 The overall compaction latency of GearDB is 55% of LevelDB.

Space Efficiency

34

• Zone space utilization after randomly loading 20, 40, 60, and 80 GB databases.

 GearDB occupies fewer zones

 GearDB shows a bimodal zone space utilization: most zones are nearly full, and a few zones are nearly empty
restricts fragments in a CWs

 GearDB maintains a high space utilization consistently (i.e., nearly 90%)

Conclusion

• Conventional Key-value stores on HM-SMR drives
 Redundant cleaning processes in application levels and storage levels

 Poor performance and inefficient space utilization

• We propose GearDB to eliminate on-disk GCs and improve compaction
efficiency
 New data layout

 Compaction windows

 Gear compaction algorithm

• 1.7× speedup for random writes with a zone space utilization of 90%
35

Thanks! Q&A

Open-source code: https://github.com/PDS-Lab/GearDB
Email: tingyao@hust.edu.cn

36

https://github.com/PDS_Lab/GearDB

