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SMR Drives
• Shingled Magnetic Recording (SMR)

Increasing disk areal density

• Properties:
 Overlapping tracks 

 Zones 

 Free read

 Random write complexity 

 Sequential write is preferred : Log-structured

• Types: Drive-managed (DM-SMR), Host-aware (HA-SMR), and Host-
managed (HM-SMR)
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Host-managed SMR Drives (HM-SMR)

• Advantages:
 Large capacity

Low total cost of ownership (TCO)

Predictable performance 

• Seagate: 13TB Seagate ST13125NM007  (Test Drive)

Exos X14 14TB 512E SATA HM-SMR 

• West Digital:15 TB Ultrastar DC HC620 SMR Hard Drive
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HM-SMR Drives

• Best For Applications
 Write data sequentially

 Read data randomly

 Require predictable performance

 Control of how data is handled 

• Application domains:
 Social media, cloud storage, life sciences…
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LSM-tree based Key-value stores

• Applications :

• Properties:
 Batched sequential writes: high write throughput 

 Fast read 

 Fast range queries 

• NoSQL: concerns predictable performance

• Trend: increasing demand on KV store’s capacity
6



KV stores on HM-SMR 

LSM-tree based KV stores

• Batched sequential write

• Good for hard disk drives

• Demand large capacity 

• Concern predictable 
performance 

HM-SMR drives

• Require sequential writes

• Provide large capacity

• Predictable performance

• Low total cost of ownership 
(TCO)
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SMORE form NetApp [MSST ’17]; 
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Huawei [SDC’15];
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Redundant Cleaning Processes

 

L2

L1

Ln

L0

Memory

Disk

Cm

SSTable

 HM-SMR

Zone 1 Zone 2 Li

L0 L1 L1  L2 L0 L2 Ln Ln L1  

• Log structured write on HM-SMR drives:
SSTables form different levels with different compaction frequencies 

are mixed in a same zone.



Redundant Cleaning Processes
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Goals of GearDB
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Motivational tests

• LevelDB on an HM-SMR drive with two GCs
Ldb-Greedy: Zones with the most invalid data

Ldb-Cost Benefits: Zones with the oldest age and the lowest space utilization 

• Trigger GC: free space under 20% 

• Migrating valid data from one zone to another.

Randomly loading an 80 GB dataset to restricted disk space 

(Making valid data takes 80% of the disk space)
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Overhead of on-disk GC

• Record the valid data volume and 
time consumption of GCs in every 
ten minutes. 

• 50% of the execution time is spent 
on GCs when valid data volume is 
70% of disk space. 

• Garbage collections take a 
substantial proportion of the 
system execution time. 

• Degrade system performance.
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Poor Space Utilization 
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• 85% of zones have a zone space utilization  
ranges from 45% to 80%. 

(Zone Space Utilization  = 
Valid 𝑑𝑎𝑡𝑎 𝑣𝑜𝑙𝑢𝑚𝑒

𝑧𝑜𝑛𝑒 𝑠𝑖𝑧𝑒
)

• Overall disk space utilization: 60%

(Space Utilization  = 
𝑉𝑎𝑙𝑖𝑑 𝑑𝑎𝑡𝑎 𝑣𝑜𝑙𝑢𝑚𝑒

𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 𝑑𝑖𝑠𝑘 𝑠𝑝𝑎𝑐𝑒
)

500

600

700

800

900

1000

1100

1200

50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

O
p

e
ra

ti
o

n
s/

s
Disk space utilization

Ldb-CB

Ldb-Greedy

• Changing the threshold of GCs, we will 
get different space utilization. 

• System performance decreases with 
disk space utilization.
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GearDB：an LSM-tree based KV store on HM-SMR 
drives aims to achieve both high performance and 
space efficiency.

GCs bring large overhead Poor space utilization System performance degrades with 

the increase of disk space utilization
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Overall Architecture
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• New disk layout 
Mitigate fragments

• Compaction Window
Restrict compactions and 

fragments in CWs

• Gear compaction
Clean zones automatically

HM-controller 

LSM-trees

GearDB
Compaction window

A New On-disk Data Layout

Gear Compaction
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HM-SMR
(Zone Block Device)
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New disk layout 
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• Key idea: Each zone only serves 

SSTables from one level.

• Each level has multiple zones.

• SSTables in a zone share similar age 

and same compaction frequency 

• Less fragmented disk space
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Compaction window (CW)
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• For each level, a group of zones are 
selected rotationally to construct a 
compaction window.

• Each level has a CW. 

• A CW contains a group of zones of one 
level. (e.g., k=4)

𝑆𝑐𝑤𝑖 =
1

𝑘
× 𝐿𝐿𝑖 (1 ≤ 𝑘 ≤ 𝐴𝐹)

• CW is used to restrict compactions 
and fragments.
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Gear compaction
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Sorted data in memory

• Gear compaction aims to automatically clean compaction 
windows by conducting compaction only within CWs.

*Here we only show SSTables in each level’s 
compaction window.



Gear compaction
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• Step 1:
 Fetch compaction data into memory

 Merge and sort

 Divide the resultant data into three parts

Out_cw Li, In_cw Li, and Out Li
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Gear compaction 
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• Out_cw Li : data overlapped with some SSTables that are out of Li’s 
compaction window

• Step 2: write data Out_cw L2 back to L1 
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Gear compaction 

24

• Out Li : data does not overlap any SSTables in Li

• Step 3: dump data Out L2 to L2 to reduce further compactions
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Gear compaction 
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• In_cw Li: data overlapped with some SSTables in Li’s CW

• Step 4: Compact the data In_cw L2 with the overlapped SSTables in 

L2’s CW
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Gear compaction 
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• Proceed recursively in compaction windows, level by level.

• Stop when compactions reach the highest level or resultant data does 
not overlap the CW in the next level. 
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Automatically reclaim CWs
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• Gear compactions only proceed within CWs

• Invalid data is restricted within CWs

• Zones filled with invalid data can be reused as empty zones 

• GearDB reclaims CWs automatically with gear compactions



Reclaim CWs in a Gear fashion
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• A gear represents a level (Li)

• A sector is a compaction window

• A single move of a gear: reclaiming zones in 
a CW by compaction

• A full round move of a gear: reclaiming all 
zones in Li by compaction

• Reclaim all CWs in Li -> clean one CW in Li+1

• A full round moving of a gear -> one move 
in the driven gear

Li

Li+1

A Compaction  window in Li

Li+2
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Evaluation Setup 
• Comparisons

 GearDB

 Ldb-Greedy: LevelDB with greedy GCs

 Ldb-CB: LevelDB with cost-benefit GCs

• Test environment
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Linux 64-bit Linux 4.15.0-34-generic

CPU 8 * Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz

Memory 32 GB

HM-SMR 13TB Seagate ST13125NM007
Random 4 KB request (IOPS): 163(R)
Sequential (MB/s): 180(R), 178(W)

Defaults Key size=16 bytes, Value size = 4 KB, SSTable size = 4 MB



What has GearDB achieved?

30

• Random load an 80 GB dataset
• Random Load performance: 1.7× higher than LevelDB
• Space Utilization: 90%
 High random load performance and space efficiency



Write and Read Performance 
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Random Write: 
1.71× faster than 
Ldb-Greedy 
1.73× faster than 
Ldb-CB

Sequential Write: 
1.37× faster than 
Ldb-Greedy 
1.39× faster than 
Ldb-CB

Random Read Sequential Read



Why does GearDB perform better?
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• Break down the random load 
time into different operations

Eliminate device level GCs
More efficient compaction



Compaction Efficiency
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• The latency of each compaction during the random loading. 
 Reduce over 5000 compactions.
 The overall compaction latency of GearDB is 55% of LevelDB. 



Space Efficiency
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• Zone space utilization after randomly loading 20, 40, 60, and 80 GB databases.

 GearDB occupies fewer zones

 GearDB shows a bimodal zone space utilization: most zones are nearly full, and a few zones are nearly empty
restricts fragments in a CWs

 GearDB maintains a high space utilization consistently (i.e., nearly 90%)



Conclusion

• Conventional Key-value stores on HM-SMR drives
 Redundant cleaning processes in application levels and storage levels

 Poor performance and inefficient space utilization

• We propose GearDB to eliminate on-disk GCs and improve compaction
efficiency
 New data layout

 Compaction windows

 Gear compaction algorithm

• 1.7× speedup for random writes with a zone space utilization of 90%
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Thanks! Q&A

Open-source code: https://github.com/PDS-Lab/GearDB 
Email: tingyao@hust.edu.cn
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https://github.com/PDS_Lab/GearDB



