#### Finesse: Fine-Grained Feature Locality based Fast Resemblance Detection for Post-Deduplication Delta Compression

Yucheng Zhang Hubei University of Technology
Wen Xia Harbin Institute of Technology, Shenzhen & Peng Cheng Laboratory
Dan Feng Huazhong University of Science and Technology
Hong Jiang University of Texas at Arlington
Yu Hua Huazhong University of Science and Technology
Qiang Wang Huazhong University of Science and Technology



## Background

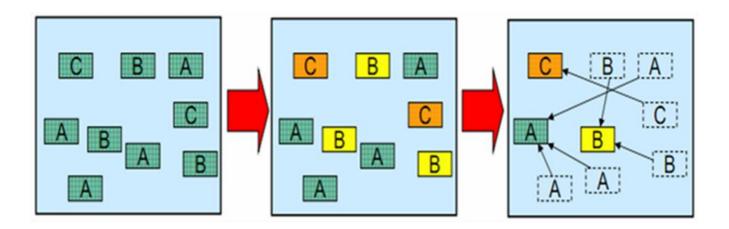


#### • Big data era

- Amount of digital data in the world will reach 44 ZB by 2020
- Redundant data in backup systems
  - About 88-90% of the data in EMC and Symantec's backup systems are duplicate (FAST'12, USENIX ATC'15)

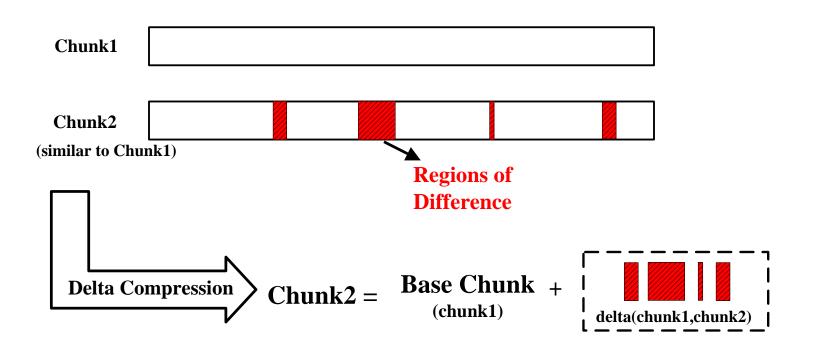
## Data Reduction Technologies

- Data deduplication
  - Remove duplicate chunks according to their fingerprints, only store one unique chunks
  - Drawback: cannot remove redundant data among nonduplicate but very similar chunks



### **Data Reduction Technologies**

- Delta compression
  - Achieve 2X more compression ratio beyond deduplication (FAST'12, Performance'14, Sigmod'17)



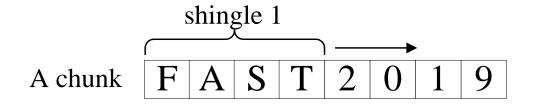
### **Resemblance Detection**

• Detecting delta compression candidates

#### Traditional N-transform Super-Feature

- Generally, It extracts a fixed number of features from a chunk and grouping N features (N=12) into M SFs (e.g., M=3) for matching. One SF matching means the two chunks are very similar
- Feature extraction is time-consuming: Requiring N linear transformations for each fingerprint to generate N-dimensional hash value sets (features)

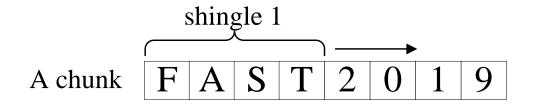
#### A simple example: extracting 4 features from a string



shingle 1 (S1): FAST shingle 2 (S2): AST2 shingle 3 (S3): ST20 shingle 4 (S4): T201 shingle 5 (S5): 2019 **Rabin fingerprinting:** 

 $S1 \longrightarrow R1$   $S2 \longrightarrow R2$   $S3 \longrightarrow R3$   $S4 \longrightarrow R4$   $S5 \longrightarrow R5$ 

#### A simple example: extracting 4 features from a string



shingle 1 (S1): FAST shingle 2 (S2): AST2 shingle 3 (S3): ST20 shingle 4 (S4): T201 shingle 5 (S5): 2019

#### **Rabin fingerprinting:**

 $S1 \longrightarrow R1$   $S2 \longrightarrow R2$   $S3 \longrightarrow R3$   $S4 \longrightarrow R4$   $S5 \longrightarrow R5$ 

#### 4 Linear transformations:

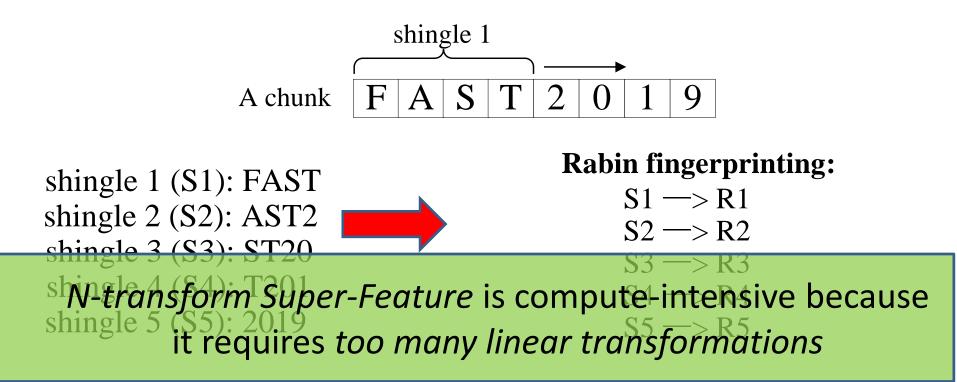
 $\begin{array}{l} \text{R1} \longrightarrow \text{R11}, \ \text{R12}, \ \text{R13}, \ \text{R14} \\ \text{R2} \longrightarrow \text{R21}, \ \text{R22}, \ \text{R23}, \ \text{R24} \\ \text{R3} \longrightarrow \text{R31}, \ \text{R32}, \ \text{R33}, \ \text{R34} \\ \text{R4} \longrightarrow \text{R41}, \ \text{R42}, \ \text{R43}, \ \text{R44} \\ \text{R5} \longrightarrow \text{R51}, \ \text{R52}, \ \text{R53}, \ \text{R54} \end{array}$ 



#### Feature extraction

Feature 1:max{R11,R21,R31,R41}
Feature 2:max{R12,R22,R32,R42}
Feature 3:max{R13,R23,R33,R43}
Feature 4:max{R14,R24,R34,R44}

#### A simple example: extracting 4 features from a string



#### 4 Linear transformations:

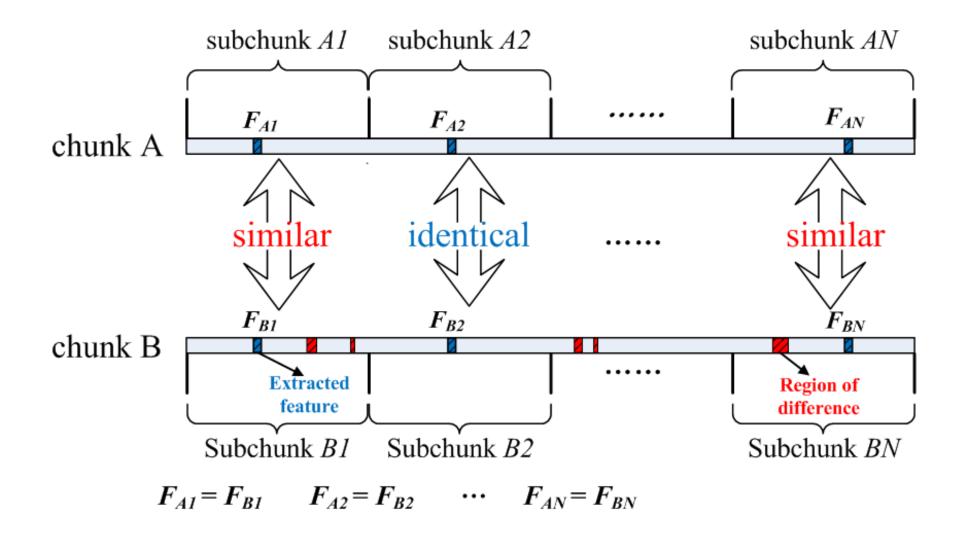
 $\begin{array}{l} \text{R1} \longrightarrow \text{R11}, \ \text{R12}, \ \text{R13}, \ \text{R14} \\ \text{R2} \longrightarrow \text{R21}, \ \text{R22}, \ \text{R23}, \ \text{R24} \\ \text{R3} \longrightarrow \text{R31}, \ \text{R32}, \ \text{R33}, \ \text{R34} \\ \text{R4} \longrightarrow \text{R41}, \ \text{R42}, \ \text{R43}, \ \text{R44} \\ \text{R5} \longrightarrow \text{R51}, \ \text{R52}, \ \text{R53}, \ \text{R54} \end{array}$ 



#### Feature extraction

Feature 1:max{R11,R21,R31,R41}
Feature 2:max{R12,R22,R32,R42}
Feature 3:max{R13,R23,R33,R43}
Feature 4:max{R14,R24,R34,R44}

#### **Observation:** Fine-grained Feature Locality



#### **Observation:** Fine-grained Feature Locality

| Datasets                                        | WEB   | TAR   | RDB   | SYN   | VMA   | VMB   |
|-------------------------------------------------|-------|-------|-------|-------|-------|-------|
| Avg. # of identical<br>subchunks                | 8.27  | 9.19  | 6.86  | 5.78  | 5.99  | 6.34  |
| Avg. # of subchunks<br>owning the same features | 10.82 | 10.97 | 10.23 | 10.10 | 10.04 | 10.64 |

All identified chunks are all divided into 12 equal-sized subchunks

Most of the corresponding subchunk pairs in the detected similar chunks have the same features

## **Design of Finesse**

Finesse, a fast resemblance detection approach that exploits the fine-grained feature locality

#### Step1: Feature extraction

- Dividing a chunk into N equal-sized subchunks, computing Rabin fingerprints for all shingles in the chunk, and selecting the maximum fingerprints in each subchunk as features to obtain N features
- Advantages: Do not require the time-consuming linear transformations for extracting more features, only need to divide the chunk into more subchunks

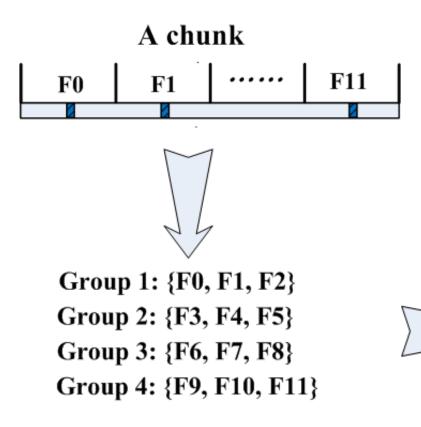
## **Design of Finesse**

Step2: Feature grouping

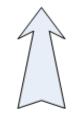
Principle: features in an SF should be extracted from the subchunks distributed uniformly across the chunk.

### **Design of Finesse**

Step2: Feature grouping



SF0: hashing{F1, F5, F7, F9} SF1: hashing{F2, F3, F8, F10} SF2: hashing{F0, F4, F6, F11}



F0 < F2 < F1 F4 < F3 < F5 F6 < F8 < F7 F11 < F10 < F9

### **Computational Overheads**

| Approaches     | Operations                                   |  |  |
|----------------|----------------------------------------------|--|--|
| N-transform SF | Rabin fingerprinting                         |  |  |
|                | N linear transformations                     |  |  |
|                | N conditional branches for feature selection |  |  |
| Finesse        | Rabin fingerprinting                         |  |  |
|                | 1 conditional branch for feature selection   |  |  |

Computational overhead required to process one shingle.

## $DR = \frac{total \ data \ size \ before \ deduplication}{total \ data \ size \ after \ deduplication}$

#### Name Size DR Workload descriptions WEB 4.21 367 GB 135 days' snapshots of the website: news.sina.com 258 versions of Linux kernel source code. Each version is 1.70 TAR 112 GB packaged as a tar file 100 backups of the redis key-value store database 540 GB 12.25 RDB 176 synthetic backups by simulating file 13.07 330 GB SYN create/delete/modify operations 78 virtual machine images of different OS release 1.61 VMA 117 GB versions, including Fedora, CentOS, Debian, etc 20 backups of an Ubuntu 12.04 VM image in use by a 10.45 VMB 321 GB research group

Datasets

## **Resemblance Detection Efficiency**

| Dataset | Approaches     | DCR            | DCE             |
|---------|----------------|----------------|-----------------|
| WEB     | N-transform SF | 7.60           | 0.8749          |
|         | Finesse        | 7.52 (-1.05%)  | 0.8795 (+0.53%) |
| TAR     | N-transform SF | 15.00          | 0.9516          |
|         | Finesse        | 15.34 (+2.27%) | 0.9846 (+3.47%) |
| RDB     | N-transform SF | 3.67           | 0.9129          |
|         | Finesse        | 3.94 (+7.36%)  | 0.9448 (+3.49%) |
| SYN     | N-transform SF | 1.75           | 0.9326          |
|         | Finesse        | 1.70 (-2.86%)  | 0.9640 (+3.37%) |
| VMA     | N-transform SF | 1.56           | 0.9088          |
|         | Finesse        | 1.51 (-3.21%)  | 0.9161 (+0.80%) |
| VMB     | N-transform SF | 1.30           | 0.9093          |
|         | Finesse        | 1.28 (-1.54%)  | 0.9193 (+1.10%) |

 $DCR = rac{total\ size\ before\ delta\ compression}{total\ size\ after\ delta\ compression}$ 

 $DCE = \frac{chunk \ data \ size \ after \ delta \ compression}{chunk \ data \ size \ before \ delta \ compression}$ 

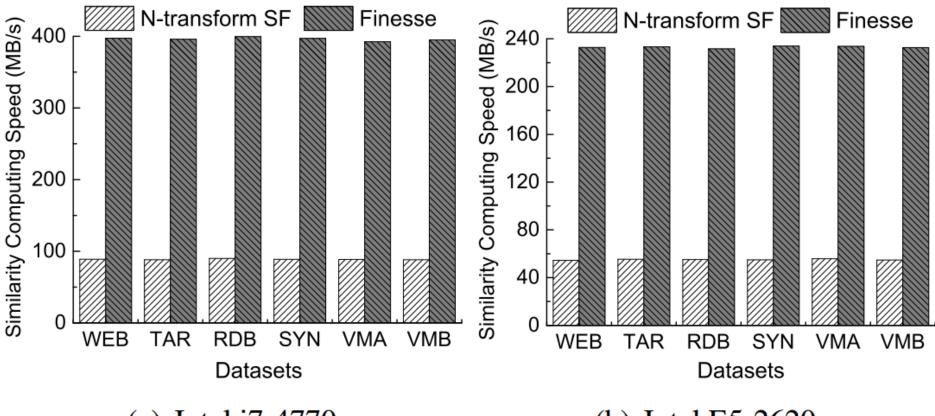
## **Resemblance Detection Efficiency**

| [   | Dataset | Approaches                           | DCR                  | DCE             |        |
|-----|---------|--------------------------------------|----------------------|-----------------|--------|
| WEB |         | N-transform SF                       | 7.60                 | 0.8749          |        |
|     |         | Finesse                              | 7.52 (-1.05%)        | 0.8795 (+0.53%) |        |
|     | TAR     | N-transform SF                       | 15.00                | 0.9516          |        |
|     | IAK     | Finesse                              | 15.34 (+2.27%)       | 0.9846 (+3.47%) |        |
| Fir | nesse   | N-transform SF                       | 3.67<br>similar rese | mblance_det     | ection |
|     |         |                                      |                      |                 |        |
|     | synej   | fficiency as N-transform SF approach |                      |                 |        |
|     | D III   | Finesse                              | 1.70 (-2.86%)        | 0.9640 (+3.37%) |        |
| VMA | VMA     | N-transform SF                       | 1.56                 | 0.9088          |        |
|     | VIVIA   | Finesse                              | 1.51 (-3.21%)        | 0.9161 (+0.80%) |        |
| [   | VMB     | N-transform SF                       | 1.30                 | 0.9093          |        |
|     | V IVID  | Finesse                              | 1.28 (-1.54%)        | 0.9193 (+1.10%) |        |

 $DCR = \frac{total\ size\ before\ delta\ compression}{total\ size\ after\ delta\ compression}$ 

 $DCE = rac{chunk\ data\ size\ after\ delta\ compression}{chunk\ data\ size\ before\ delta\ compression}$ 

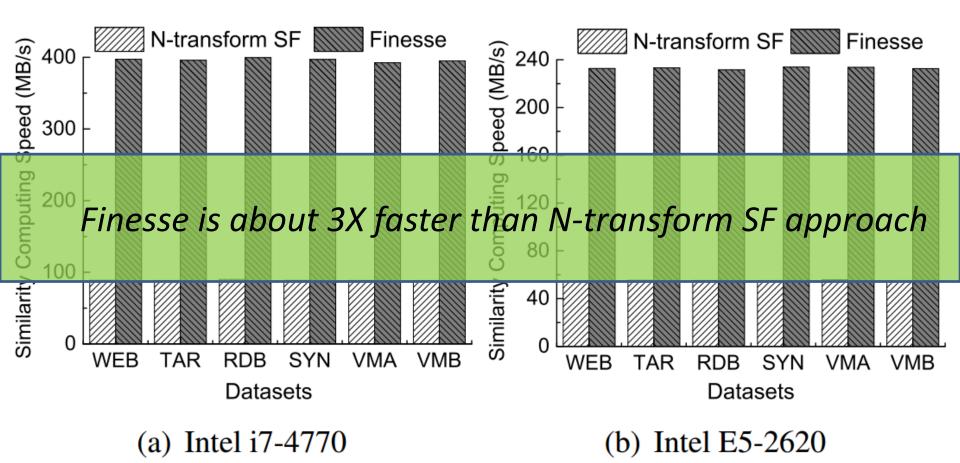
### Similarity Computing Speed



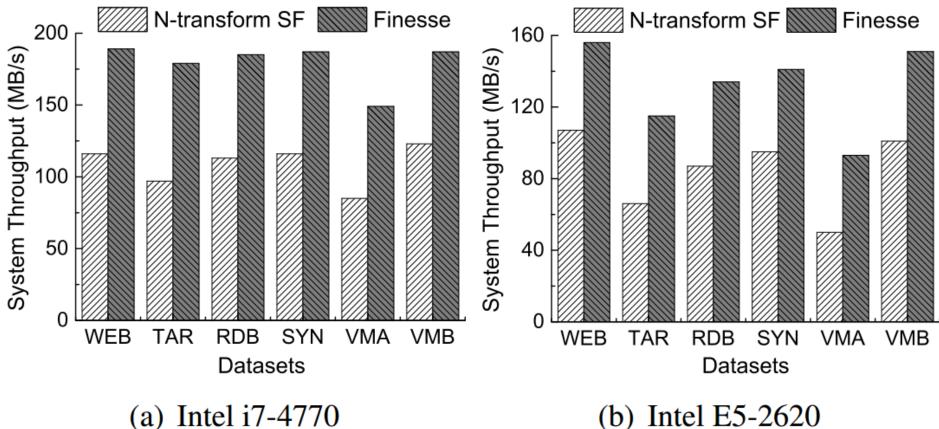
(a) Intel i7-4770

(b) Intel E5-2620

## Similarity Computing Speed

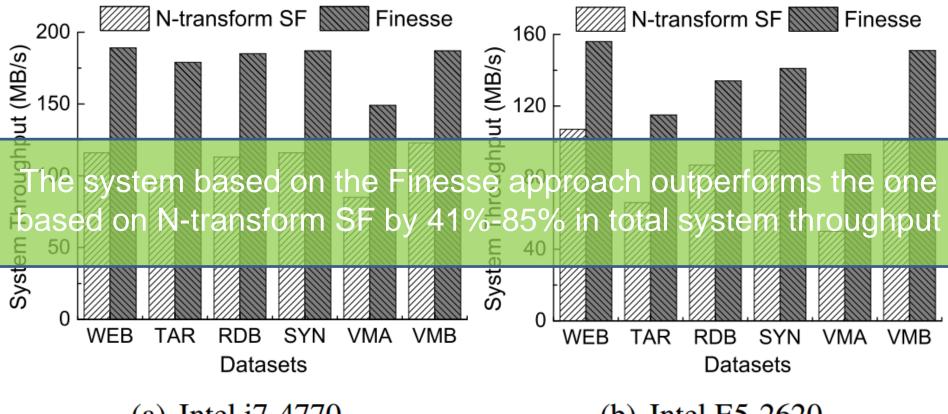


### System Throughput



(b) Intel E5-2620

## System Throughput



(a) Intel i7-4770

(b) Intel E5-2620

## Conclusion

- We observed fine-grained feature locality among similar chunks in backup workloads
- We proposed Finesse, a fast resemblance detection based on fine-grained feature locality
- Our experimental results suggest Finesse runs 3X faster than N-transform SF for resemblance detection

# Thank you!

**Questions?**