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Once upon a time in our research…

• We were evaluating a key-value SSD

• Found each KV operation is independently processed
– High interfacing overhead for small KV operations

• What if we can gather multiple KV operations in a single command?
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Firmware

Once upon a time in our research…

• Turned out that we should change the firmware of KVSSD, which was beyond our control
– Code availability, engineering efforts, research resources, legal matter, …
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Operating System

Application
Ahhh…

It would be awesome
if we had a NVMe device

in software

Emulator??
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Dilemma of Emulator

• Emulators can facilitate advanced storge research by actualizing novel device concepts
– Open-Channel SSD, NVM SSD, KVSSD, Zoned Namespace (ZNS) SSD, computational storage, …

– Can implement the concepts in software
• No need to wait until they become available at retailor shops

• $$$

• Cannot support some I/O models and storage configurations that are frequently used for 
building modern storage systems
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Previous: Device Driver-level Approaches

• Catch I/O requests at the block/NVMe device driver and emulate the 
requests
– DavidFAST11, FlexDriveHPCC16, …

• Can only process ‘regular’ I/O requests

• Unable to support user-driven I/O: Kernel bypassing with SPDK

• Neither for device-driven I/O
– RDMA target for NVMe-oF, PCI peer-to-peer DMA
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GPU
/ NIC

Previous: Virtualization-based Approaches

• Hypervisor emulates a virtual device exposed to the guest OS
– VSSIMMSST13, FEMUFAST18, ZNS+OSDI21 , …

• Can support the user-driven I/O

• Cannot support device-driven I/O configurations
– No way to contact the virtual device from real devices on the host

– Complicated memory layout in VM environments makes
RDMA infeasible

• Virtualization overhead limits and/or impacts on the performance 
characteristics of target devices
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• A light-weight kernel module that presents a native NVMe device to the entire system
– Support any storage configurations!

NVMeVirt: Virtual NVMe Device in Software

PCIe Root Complex

PCIe Switch

CPU

RAM

PCIe ports

GPU
NIC

Virtual
NVMe device

• Conventional SSD
• NVM SSD
• ZNS SSD
• KVSSD
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Challenges for Virtual PCI/NVMe Devices

• Challenge 1: How to create a virtual PCI device instance in the system
– The real device initiates the initialization

– We don’t have the physical device that can initiate the initialization

– We don’t want to mess up with the existing PCI subsystem implementation
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Challenges for Virtual PCI/NVMe Devices

• Challenge 1: How to create a virtual PCI device instance in the system
– The real device initiates the initialization

– We don’t have the physical device that can initiate the initialization

– We don’t want to mess up with the existing PCI subsystem implementation

• Solution: Make a PCI device instance indirectly through PCI bus

– Create a virtual PCI bus that presents the PCI configuration header of virtual device to the PCI 
subsystem

– No modification is needed in the Linux kernel
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Challenges for Virtual PCI/NVMe Devices

• Challenge 2: Cannot rely on the PCI mechanism to detect the requests from the host-side
– Updates to the control block and doorbells are notified to the device as PCI transactions 
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Challenges for Virtual PCI/NVMe Devices

• Challenge 2: Cannot rely on the PCI mechanism to detect the requests from the host-side
– Updates to the control block and doorbells are notified to the device as PCI transactions 
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Challenges for Virtual PCI/NVMe Devices

• Challenge 2: Cannot rely on the PCI mechanism to detect the requests from the host-side
– Updates to the control block and doorbells are notified to the device as PCI transactions 
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Challenges for Virtual PCI/NVMe Devices

• Challenge 2: Cannot rely on the PCI mechanism to detect the requests from the host-side
– Updates to the control block and doorbells are notified to the device as PCI transactions 

à Changes are applied silently as normal memory writes

• Solution: Dedicate a thread that scans the control block and doorbells to find any updates
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• Dispatcher directly processes 
configuration requests
– Enable/shutdown device

– Identify device and namespaces

– Setup administration queue pair

– Set/get features (e.g., # of queues)

– Allocate/deallocate I/O queues

• Handle completion doorbells
– Perform housekeeping

Emulating NVMe Device: Configuration Requests

14

NVMe Control Block

Dispatcher

Doorbells

S0

S1

AQ

C0

C1

AC

S3

S4

S2

C3

C4

C2

SQ CQ

Administration QP



• I/O requests are divided into backend 
operations
– According to the configured backend type

• Attach timestamps on the backend 
operations
– Requested time, expected completion time

Emulating NVMe Device: I/O Requests
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• Backend operations are dispatched to I/O 
workers

• I/O worker moves data using DMA engine
– Intel I/O Acceleration Technology (IOAT)

– Accessing payloads on device memory with 
CPU memcpy incurs a huge number of PCI 
TXs

Emulating NVMe Device: I/O Requests
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SQ CQ

I/O Queue Pair #1

• Notify of the I/O completion through IPI 
with MSI-X interrupt vector

Emulating NVMe Device: I/O Requests
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• Simple model for NVM SSDs

• Parallel model for conventional SSDs
– A full-scale page-mapped FTL with GC

– Model the on-device write buffer

– Model the parallel architectures in modern SSDs

• Multiple FTL instances

• Multiple dies and channels that operate 
independently

• PCIe link and channels with limited aggregate 
bandwidth

• More details are in the paper!

Performance Models
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Evaluation
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NUMA 0: Applications NUMA 1: NVMeVirt

36 cores

I/O WorkersDispatcher

192 GiB RAM

Samsung 970 Pro
• Conventional SSD
• 512 GB

Intel P4800X
• OptaneDC NVM SSD
• 350 GB

Samsung KVSSD
• 3.84 TB

Prototype ZNS SSD
• 96 MiB zones
• 192 KiB write unit
• 32 TB

• Implemented in the Linux kernel 
5.15 (~9,000 LoC)

• Intel Xeon Gold 6240 x2
• 394 GiB RAM

• Debian Bullseye 11.5
• MariaDB 10.5
• PostgreSQL 13

36 cores 192 GiB RAM

KVBench

KVCeph

fio sysbench

YCSB
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• Distribution of percentiles for 10 runs
– Each run does 4 KiB random writes with fio

– Error bar indicates the standard deviation for 
the percentile

Emulation Quality: Performance Variance

20

Longer error bar implies higher 
performance fluctuation



• Distribution of percentiles for 10 runs
– Each run does 4 KiB random writes with fio

– Error bar indicates the standard deviation for 
the percentile

• FEMU exhibits a long tail latency and high 
run-by-run performance fluctuation

• FEMU would not be able to consistently 
emulate high-performance NVM SSDs

• NVMeVirt provides low latency with little 
performance variation

Emulation Quality: Performance Variance
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Performance Comparison to Real Devices
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Performance Comparison to Real Devices
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Harmonic mean of performance differences = 1.17%

NVMeVirt can replicate the real devices’ performance closely



Performance Characteristics Compared to Real Devices
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Distributions of latencies
• fio 16 KiB

Performance impact of GC
• Fill storage with sequential writes
• Perform random writes to trigger GC

Throughput over time
• YCSB-A on RocksDB

(50:50 read:update)
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Case Study: DBMS on Various Storage Configurations

• Sysbench with various bandwidth limits
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More case studies in the paper



Conclusion

• NVMeVirt presents a virtual NVMe device

• Support all the modern storage configurations and device types
– Configurations: Kernel bypass, PCI P2P DMA, and RDMA

– Types: Conventional SSD, NVM SSD, ZNS SSD, and KVSSD

• Code is available at Github: https://github.com/snu-csl/nvmevirt
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https://github.com/snu-csl/nvmevirt.git


https://github.com/snu-csl/nvmevirt
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