
Sang-Hoon Kim*, Jaehoon Shim†, Euidong Lee†

Seongyeop Jeong†, Ilkueon Kang†, Jin-Soo Kim†

NVMeVirt:
A Versatile Software-defined

Virtual NVMe Device

* †

USENIX FAST’23

Re
sp

on
se

Re
sp

on
se

Once upon a time in our research…

• We were evaluating a key-value SSD

• Found each KV operation is independently processed
– High interfacing overhead for small KV operations

• What if we can gather multiple KV operations in a single command?

2

Host

KVSSD DMA

[(k1, v1), (k2, v2), (k3, v3)]Request

Host

KVSSD

Request

DMA

(k1, v1) (k2, v2) (k3, v3)

Time

[Transaction Support Using Compound Commands in Key-Value SSDs (HotStorage’19)]

Firmware

Once upon a time in our research…

• Turned out that we should change the firmware of KVSSD, which was beyond our control
– Code availability, engineering efforts, research resources, legal matter, …

3

Operating System

Application
Ahhh…

It would be awesome
if we had a NVMe device

in software

Emulator??

NVMe device driver

I/O interface

Hardware
(KVSSD)

[(k1, v1), (k2, v2), (k3, v3)]

(k1, v1), (k2, v2), (k3, v3)

Dilemma of Emulator

• Emulators can facilitate advanced storge research by actualizing novel device concepts
– Open-Channel SSD, NVM SSD, KVSSD, Zoned Namespace (ZNS) SSD, computational storage, …

– Can implement the concepts in software
• No need to wait until they become available at retailor shops

• $$$

• Cannot support some I/O models and storage configurations that are frequently used for
building modern storage systems

4

Previous: Device Driver-level Approaches

• Catch I/O requests at the block/NVMe device driver and emulate the
requests
– DavidFAST11, FlexDriveHPCC16, …

• Can only process ‘regular’ I/O requests

• Unable to support user-driven I/O: Kernel bypassing with SPDK

• Neither for device-driven I/O
– RDMA target for NVMe-oF, PCI peer-to-peer DMA

5

OS

Device
driver

GPU
/ NIC

Application
User-driven

I/O

Device-driven I/O

I/O requests

GPU
/ NIC

Previous: Virtualization-based Approaches

• Hypervisor emulates a virtual device exposed to the guest OS
– VSSIMMSST13, FEMUFAST18, ZNS+OSDI21 , …

• Can support the user-driven I/O

• Cannot support device-driven I/O configurations
– No way to contact the virtual device from real devices on the host

– Complicated memory layout in VM environments makes
RDMA infeasible

• Virtualization overhead limits and/or impacts on the performance
characteristics of target devices

6

OS

Application

Hypervisor

I/O stack

NVMe commands

I/O requests

• A light-weight kernel module that presents a native NVMe device to the entire system
– Support any storage configurations!

NVMeVirt: Virtual NVMe Device in Software

PCIe Root Complex

PCIe Switch

CPU

RAM

PCIe ports

GPU
NIC

Virtual
NVMe device

• Conventional SSD
• NVM SSD
• ZNS SSD
• KVSSD

7

Challenges for Virtual PCI/NVMe Devices

• Challenge 1: How to create a virtual PCI device instance in the system
– The real device initiates the initialization

– We don’t have the physical device that can initiate the initialization

– We don’t want to mess up with the existing PCI subsystem implementation

8

Class Code

PCI Configuration Header
Base Address

Register 0

Host / Device driverNVMe device

Challenges for Virtual PCI/NVMe Devices

• Challenge 1: How to create a virtual PCI device instance in the system
– The real device initiates the initialization

– We don’t have the physical device that can initiate the initialization

– We don’t want to mess up with the existing PCI subsystem implementation

• Solution: Make a PCI device instance indirectly through PCI bus

– Create a virtual PCI bus that presents the PCI configuration header of virtual device to the PCI
subsystem

– No modification is needed in the Linux kernel

9

Challenges for Virtual PCI/NVMe Devices

• Challenge 2: Cannot rely on the PCI mechanism to detect the requests from the host-side
– Updates to the control block and doorbells are notified to the device as PCI transactions

10

Controller Capabilities

Interrupt Mask
Clear

Subsystem Reset

Admin SQ Base Address

Admin CQ Base Address

CMB Location

Controller
Configuration

Version Interrupt Mask
Set

Reserved Controller Status

Admin Q
Attributes

CMB Size

00h

08h

10h

18h

20h

28h

30h

38h

NVMe Control Block

1000h

1010h

1020h

Doorbells

Device memory mapped to
the host’s address space

Host / Device driverNVMe device

Challenges for Virtual PCI/NVMe Devices

• Challenge 2: Cannot rely on the PCI mechanism to detect the requests from the host-side
– Updates to the control block and doorbells are notified to the device as PCI transactions

11

Controller Capabilities

Interrupt Mask
Clear

Subsystem Reset

Admin SQ Base Address

Admin CQ Base Address

CMB Location

Controller
Configuration

Version Interrupt Mask
Set

Reserved Controller Status

Admin Q
Attributes

CMB Size

00h

08h

10h

18h

20h

28h

30h

38h

NVMe Control Block

.enable = 1PCI Tx

1000h

1010h

1020h

Doorbells

Host / Device driverNVMe device

Challenges for Virtual PCI/NVMe Devices

• Challenge 2: Cannot rely on the PCI mechanism to detect the requests from the host-side
– Updates to the control block and doorbells are notified to the device as PCI transactions

12

Controller Capabilities

Interrupt Mask
Clear

Subsystem Reset

Admin SQ Base Address

Admin CQ Base Address

CMB Location

Controller
Configuration

Version Interrupt Mask
Set

Reserved Controller Status

Admin Q
Attributes

CMB Size

00h

08h

10h

18h

20h

28h

30h

38h

NVMe Control Block

PCI Tx

.ready = 1

1000h

1010h

1020h

Doorbells

Host / Device driverNVMe device

Challenges for Virtual PCI/NVMe Devices

• Challenge 2: Cannot rely on the PCI mechanism to detect the requests from the host-side
– Updates to the control block and doorbells are notified to the device as PCI transactions

à Changes are applied silently as normal memory writes

• Solution: Dedicate a thread that scans the control block and doorbells to find any updates

13

• Dispatcher directly processes
configuration requests
– Enable/shutdown device

– Identify device and namespaces

– Setup administration queue pair

– Set/get features (e.g., # of queues)

– Allocate/deallocate I/O queues

• Handle completion doorbells
– Perform housekeeping

Emulating NVMe Device: Configuration Requests

14

NVMe Control Block

Dispatcher

Doorbells

S0

S1

AQ

C0

C1

AC

S3

S4

S2

C3

C4

C2

SQ CQ

Administration QP

• I/O requests are divided into backend
operations
– According to the configured backend type

• Attach timestamps on the backend
operations
– Requested time, expected completion time

Emulating NVMe Device: I/O Requests

15

SQ CQ

I/O Queue Pair #1

Dispatcher

Conv. SSD

FTL

NVM SSD

ZNS SSD KVSSD

Zone
info

Index

Backends

Doorbells

S0

S1

AQ

C0

C1

AC

S3

S4

S2

C3

C4

C2

• Backend operations are dispatched to I/O
workers

• I/O worker moves data using DMA engine
– Intel I/O Acceleration Technology (IOAT)

– Accessing payloads on device memory with
CPU memcpy incurs a huge number of PCI
TXs

Emulating NVMe Device: I/O Requests

16

SQ CQ

I/O Queue Pair #1

Dispatcher

I/O worker #0

Conv. SSD

FTL

NVM SSD

ZNS SSD KVSSD

Zone
info

Index

Backends

Doorbells

S0

S1

AQ

C0

C1

AC

S3

S4

S2

C3

C4

C2

I/O worker #1

SQ CQ

I/O Queue Pair #1

• Notify of the I/O completion through IPI
with MSI-X interrupt vector

Emulating NVMe Device: I/O Requests

17

I/O worker

IPI with MSI-X
interrupt vector

Doorbells

S0

S1

AQ

C0

C1

AC

S3

S4

S2

C3

C4

C2

Dispatcher

• Simple model for NVM SSDs

• Parallel model for conventional SSDs
– A full-scale page-mapped FTL with GC

– Model the on-device write buffer

– Model the parallel architectures in modern SSDs

• Multiple FTL instances

• Multiple dies and channels that operate
independently

• PCIe link and channels with limited aggregate
bandwidth

• More details are in the paper!

Performance Models

18

Write Buffer

FTL
Instance

#0

FTL
Instance

#1

FTL
Instance

#2

FTL
Instance

#3
Channels (800 MiB/s per each)

Page

Block

Die

Page

Block

Die

Page

Block

Die

Page

Block

Die

PCIe Link (3.5 GiB/s)

Evaluation

19

NUMA 0: Applications NUMA 1: NVMeVirt

36 cores

I/O WorkersDispatcher

192 GiB RAM

Samsung 970 Pro
• Conventional SSD
• 512 GB

Intel P4800X
• OptaneDC NVM SSD
• 350 GB

Samsung KVSSD
• 3.84 TB

Prototype ZNS SSD
• 96 MiB zones
• 192 KiB write unit
• 32 TB

• Implemented in the Linux kernel
5.15 (~9,000 LoC)

• Intel Xeon Gold 6240 x2
• 394 GiB RAM

• Debian Bullseye 11.5
• MariaDB 10.5
• PostgreSQL 13

36 cores 192 GiB RAM

KVBench

KVCeph

fio sysbench

YCSB

� 	� ��
� �� ���

��'��$)!"�

�

��

	�

�

��

��
�
�
)
�
$
�
*
��
#
!�
'
%
(
�
�
%
$
�
(
�

�&)�$�������) ������

�����!')

����

���

�&)�$�

• Distribution of percentiles for 10 runs
– Each run does 4 KiB random writes with fio

– Error bar indicates the standard deviation for
the percentile

Emulation Quality: Performance Variance

20

Longer error bar implies higher
performance fluctuation

• Distribution of percentiles for 10 runs
– Each run does 4 KiB random writes with fio

– Error bar indicates the standard deviation for
the percentile

• FEMU exhibits a long tail latency and high
run-by-run performance fluctuation

• FEMU would not be able to consistently
emulate high-performance NVM SSDs

• NVMeVirt provides low latency with little
performance variation

Emulation Quality: Performance Variance

22

� 	� ��
� �� ���

��'��$)!"�

�

��

	�

�

��

��
�
�
)
�
$
�
*
��
#
!�
'
%
(
�
�
%
$
�
(
�

����������) ������

�&)�$�������) ������

�����!')

����

���

�&)�$�

Performance Comparison to Real Devices

23

fio random access latency OpenMPDK
KVBench
agg. BW

KVCeph
agg. BW

��
�
��
�

�

��

��
��

�
��

��
��
�

�	

�
�

��
�
��
�

�

��

��
��

�
��

��
��
�

�	

�
�

��
�
��
�

�

��

��
��

�
��

��
��
�

�	

�
�

��
�
��
�

�

��

��
��

�
��

��
��
�

�	

�
�

��
�
��
�

�

��

��
��

�
��

��
��
�

�	

�
�

��
%�
$

��
%�
$

��
%�
$

��
%�
$

�

�%�
$

��
�
��
�

��
��

�

�� ��
�
��
�

��
��

�

�� �
��

�

�

�

�

��

��

�"
$
��
�'�
��
#�
$�"
$
�!
��

����
�

���� �����
���

���� �����

��

���� �����
�	���

���� ����� ��
�#�

�������&���
������$%

Normalized to these values

Performance Comparison to Real Devices

25

��
�

��
�

	�
��

�

��

��
��

	

��
�

��
�

��
�

��
�

	�
��

�

��

��
��

	

��
�

��
�

��
�

��
�

	�
��

�

��

��
��

	

��
�

��
�

��
�

��
�

	�
��

�

��

��
��

	

��
�

��
�

��
�

��
�

	�
��

�

��

��
��

	

��
�

��
�

	�
*"
)

�
*"
)

��
*"
)

��
*"
)

	�
�*"

)

��
�

��
�

	

��

	�
�� ��
�

��
�

	

��

	�
�� �

��

�

�

�

�

	�

	

�'
)%

�$
#,

��
(

)!'
)%

�&
�

����
�

���� �����
���

���� �����

��

���� �����
�	���

���� ����� ��� ("

�	�����	��
� �

����
���� �	
�
��	���� � �$�� +#�
��� �#)*

Harmonic mean of performance differences = 1.17%

NVMeVirt can replicate the real devices’ performance closely

Performance Characteristics Compared to Real Devices

27

� �� 	�
� �� ���
����������

�

��

	�

�

��

���

��
��
��
!�
�
��

�����

����

������ ��������

� �� ��� ��� ��� ��� 	��
�������������

�

�

��

��

��

��

	�

	�

�

��
��
 �

��
 �
��!

��
��
��
��

��� ��
�����

� �� 	�� 	��
��
�� ���
������ ������

���

���

	��

	��

��

��

��
���

��
��

��
���

��
�
�

�
����� �������!

Distributions of latencies
• fio 16 KiB

Performance impact of GC
• Fill storage with sequential writes
• Perform random writes to trigger GC

Throughput over time
• YCSB-A on RocksDB

(50:50 read:update)

	�� ��� ���� 	��� ��%
��!��#�����$��#�������"�

�

	���

���

����

���

�����

�!
��
"�
�#
��
�"
�
�!
�"
��
��
��
��
��
�

��!����
��"#�!����

	�� ��� ���� 	��� ��%
��!��#�����$��#�������"�

�

	���

���

����

���

�����

�!
��
"�
�#
��
�"
�
�!
�"
��
��
��
��
��
�

��!����
��"#�!����

� ��� 	��
��

�������������

�

���

����

����

	���

	���

���

�
�
��
�
�
�
�
��
�
�
��
�
�
��
�

� ��� 	��
��

�������������

�

���

����

����

	���

	���

���

�
�
��
�
�
�
�
��
�
�
��
�
�
��
�

� ��� 	��
��

�������������

�

���

����

����

	���

	���

���

�
�
��
�
�
�
�
��
�
�
��
�
�
��
�

� ��� 	��
��

�������������

�

���

����

����

	���

	���

���

�
�
��
�
�
�
�
��
�
�
��
�
�
��
�

� ��� 	��
��

�������������

�

���

����

����

	���

	���

���

�
�
��
�
�
�
�
��
�
�
��
�
�
��
�

� ��� 	��
��

�������������

�

���

����

����

	���

	���

���

�
�
��
�
�
�
�
��
�
�
��
�
�
��
� 	��

���

����

	���

���

� ��� 	��
��

�������������

�

���

����

����

	���

	���

���

�
�
��
�
�
�
�
��
�
�
��
�
�
��
� 	��

���

����

	���

���

� ��� 	��
��

�������������

�

���

����

����

	���

	���

���

�
�
��
�
�
�
�
��
�
�
��
�
�
��
� 	��

���

����

	���

���

� ��� 	��
��

�������������

�

���

����

����

	���

	���

���

�
�
��
�
�
�
�
��
�
�
��
�
�
��
� 	��

���

����

	���

���

� ��� 	��
��

�������������

�

���

����

����

	���

	���

���

�
�
��
�
�
�
�
��
�
�
��
�
�
��
� 	��

���

����

	���

���

Case Study: DBMS on Various Storage Configurations

• Sysbench with various bandwidth limits

28

More case studies in the paper

Conclusion

• NVMeVirt presents a virtual NVMe device

• Support all the modern storage configurations and device types
– Configurations: Kernel bypass, PCI P2P DMA, and RDMA

– Types: Conventional SSD, NVM SSD, ZNS SSD, and KVSSD

• Code is available at Github: https://github.com/snu-csl/nvmevirt

29

https://github.com/snu-csl/nvmevirt.git

https://github.com/snu-csl/nvmevirt

30

Sang-Hoon Kim, Jaehoon Shim, Euidong Lee
Seongyeop Jeong, Ilkueon Kang, Jin-Soo Kim

NVMeVirt:
A Versatile Software-defined Virtual NVMe Device

https://github.com/snu-csl/nvmevirt.git

