MadFS: Per-File Virtualization for

Userspace Persistent Memory Filesystems

Shawn Zhong*, Chenhao Ye*, Guanzhou Hu, Suyan Qu

Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau, Michael Swift

WISCONSIN

IIIIIIIIIIIIIIIIIIIIIIIIIIII

* Equal contribution 1

Background: Persistent Memory

A Ll

Fast Byte-Addressable Non-Volatile

sub-us latency accessed via CPU retain data
instructions without power

Background: Kernel Filesystems for PM

Application Kernel FS manages both data & metadata

open()|read()
Userspace close()|write()

Filesystem

load|store

Metadst

Background: Kernel Filesystems for PM

Application Kernel FS manages both data & metadata

open()| read() Overhead for append in ext4-DAX

Userspace close()|write()

* System call

* VFS (e.g., inode locking)

Filesystem

* Metadata journaling in block granularity

1
oad|store 4 KB Append

ext4-DAX I 7x slower

Metadata Device I

0 0.5 I 1.5 2
Throughput (GB/s)

Background: Userspace Filesystems for PM

Userspace FS bypass kernel for data ops

open() | * Memory-map file data on open

Userspace close()!

* Handle read/write in userspace via load/store
load

Filesystem

Background: Userspace Filesystems for PM

Application Data Userspace FS bypass kernel for data ops

open() | * Memory-map file data on open

Userspace close()!1

* Handle read/write in userspace via load/store

load

Filesystem

Metadata still managed by kernel

Issue: Data ops coupled metadata updates

Example: Append + Fsync in SplitFS [SOSP ’19]

Example: Append + Fsync in SplitFS

Append “B”: Userspace Data Operation
Pre-Allocated
Target File Staging File

\

PM Device \\

Example: Append + Fsync in SplitFS

Append “B”: Userspace Data Operation

Pre-Allocated
Target File Staging File * Write data to pre-allocated file

\

PM Device \\

Example: Append + Fsync in SplitFS

Target File

.

Pre-Allocated
Staging File

Append “B”: Userspace Data Operation

* Write data to pre-allocated file

Fsync: Kernel Metadata Operation
* Remap data to target file for visibility

* Update block map in inode

memory map / page table

Example: Append + Fsync in SplitFS

Target File

"\

Pre-Allocated
Staging File

Append “B”: Userspace Data Operation

* Write data to pre-allocated file

Fsync: Kernel Metadata Operation
* Remap data to target file for visibility

* Update block map in inode: kernel I/O stack

memory map / page table: TLB

Kernel metadata operation is expensive

10

Example: Append + Fsync in SplitFS

4 KB Append + Fsync

Throughput (GB/s)

Result:Worse performance compared to kernel FS &

11

Background: Userspace Filesystems for PM

Application Expensive to modify kernel-managed metadata

Can we manage all metadata in userspace!?

I
I
I
load :
I
I
I
I

|
PM
Metadata

12

Background: Userspace Filesystems for PM

Application

|
PM
Metadata

Expensive to modify kernel-managed metadata

Can we manage all metadata in userspace!?
Unfortunately, no: applications are untrusted

Example: malicious user changes permission

13

Background: Userspace Filesystems for PM

Application

|
PM
Metadata

Expensive to modify kernel-managed metadata

Can we manage all metadata in userspace!?
Unfortunately, no: applications are untrusted

Example: malicious user changes permission

What about only the metadata coupled with

data operation

14

Q. Observation:

Some file metadata share

the same protection domain as

o

Data Size & Block Map Allocation & Owner

Userspace

Kernel

15

O- Insight:
Embed these metadata into
for efficient userspace management

without sacrificing security

16

Metadata Embedding

Observation: Some metadata share the same protection domain as data

Example: Block map

Permission to swap two block pointers within a file

Permission to modify the file data
Allocation & Owner

o

Data Size & Block Map

Userspace

Kernel

17

Metadata Embedding

Insight: Embed metadata coupled with data ops into file data

Efficient metadata operations File Data G

e No kernel I/O stack involvement Embedded Metadata
(Block Map + File Size)

Userspace
Equivalent security guarantees Kernel-Managed
Metadata
* Require write permission to modify (Allocation, Mode, ...)

embedded metadata

18

MadFS: Metadata Embedded Filesystem

Userspace library filesystem for PM

. Memory mapped /1O k POSIX Application j

lopen l [p]read l [p]write l [f]stat lclose
* Data & most metadata (v, 4Fs Lib

Ops In userspace

* Data crash consistency

via copy-on-write l open i mmap l fallocate i fstat l close - Userspace
(File on Unmodified Kernel FS (e.g., ext4-DAX)

19

MadFS: Simplified Design

Logical
Block Index
LI
L2
L3

L4

L5

/foo

Embedded Metadata

Data Block: B

Data Block: C

Data Block: A

Pre-Allocated Data Block

Logical blocks: stored on the underlying FS

Virtual blocks: seen by the application

20

MadFS: Simplified Design

Logical
Block Index
LI
L2
L3

L4

L5

/foo

Embedded Metadata

Data Block: B

Data Block: C

Data Block: A

Pre-Allocated Data Block

Logical blocks: stored on the underlying FS

Virtual blocks: seen by the application

VI V2 V3
A B Virtual
>$< Logical
M| B C|A|? .
LI L2 L5

Block Map: {V1:L4,V2:L2,V3:L3}
Bitmap: 111100---
Virtual File Size: 12 KB

21

MadFS: Simplified Design

Example: pwrite(fd,

buf

, count=6KB, offset=10KB)

VI V2 V3 V4

A| B (::bufi

Block Map: {V1:L4,V2:L2,V3:L3}
Bitmap: 111100---
Virtual File Size: 12 KB

22

MadFS: Simplified Design

Example: pwrite(fd, | buf

, count=6KB, offset=10KB)

|.Allocate 2 logical blocks from the bitmap

VI V2 V3
A B Virtual
M Logical
M| B | C| A | ? | ?|:
LI L2 L5 L6

Block Map: {V1:L4,V2:L2,V3:L3}
Bitmap: 111111---
Virtual File Size: 12 KB

23

MadFS: Simplified Design

Example: pwrite(fd, | buf

, count=6KB, offset=10KB)

|.Allocate 2 logical blocks from the bitmap

2. Copy buffer and unaligned data

VI V2 V3
A B C Virtual
M| B | C|A|C buf -
LI L2 L5 L6

Block Map: {V1:L4,V2:L2,V3:L3}
Bitmap: 111111---
Virtual File Size: 12 KB

24

MadFS: Simplified Design

Example: pwrite(fd,

buf

, count=6KB, offset=10KB)

|. Allocate 2 logical bloc

s from the bitmap

VI V2 V3 V4

A | B |C]| buf Virtual
2. Copy buffer and unaligned data ?f """" Logical
C bu "
3. Update block map and virtual size LI L2 L5 L6

Block Map: {V1:L4,V2:L2,V3:L5,V4:L6}
Bitmap: 111111---
Virtual File Size: 16 KB

25

MadFS: Simplified Design

Example: pwrite(fd,

buf

, count=6KB, offset=10KB)

VI V2 V3 V4

|.Allocate 2 logical blocks from the bitmap | & lchbur .

2. Copy buffer and unaligned data ?f """" Logical
C bu "

3. Update block map and virtual size L L2 L5 L6

4. Deallocate old blocks

Block Map: {V1:L4,V2:L2,V3:L5,V4:L6}
Bitmap: 116111---
Virtual File Size: 16 KB

26

MadFS: Simplified Design

Example: pwrite(fd,

buf

, count=6KB, offset=10KB)

VI V2 V3 V4

|.Allocate 2 logical blocks from the bitmap | & lchbur .

2. Copy buffer and unaligned data ?*f """" Logical
C bu "

3. Update block map and virtual size L L2 L5 L6

4. Deallocate old blocks

Copy-on-write & append in userspace | Virtual File Size: 16 KB

Block Map: {V1:L4,V2:L2,V3:L5,V4:L6}
Bitmap: 110111---

27

MadFS: Metadata Management

* Virtua

* Virtua

* Logica

-to-logical map
file size

blocks bitmap

Allows efficient data ops without

expensive kernel involvement

Kernel-Managed Metadata

28

MadFS: Metadata Management

* Virtua
* Virtua

* Logica

-to-logical map
file size

blocks bitmap

Allows efficient data ops without

expensive kernel involvement

Kernel-Managed Metadata

* Logical-to-physical map\
Updated on
* Logical file size >pre-al|ocation

(infrequent)

* Physical blocks bitmap |
* File permission

Provides coarse-grained allocation and

protection

29

MadFS: Per-File Virtualization

A userspace virtualization layer implements a complete set of file
functionalities, including metadata management, crash consistency, and

concurrency control, on a per-file basis

>3

Metadata Management Crash Consistency Concurrency Control

30

MadFS: Full Design (Details in Paper)

8-byte log entry
A

< Metadata Crash Consistency

* Log-structured metadata with 8-byte log entries

LE

LE

LE

Virtual 3-4 - Logical 5-6

31

MadFS: Full Design (Details in Paper)

X Metadata Crash Consistency

* Log-structured metadata with 8-byte log entries

Lock-Free Optimistic Concurrency Control
* Commit log entry via compare-and-swap (CAS)
* Safe in presence of process crashes

* Better scalability with concurrent data ops

8-byte log entry
|

LE

LE

LE

Virtual 3-4 - Logical 5-6

CAS

CAS

commit?

LE

LE

LE

32

MadFS: Full Design (Details in Paper)

8-byte log entry
|

X Metadata Crash Consistency

* Log-structured metadata with 8-byte log entries

Lock-Free Optimistic Concurrency Control
* Commit log entry via compare-and-swap (CAS)
* Safe in presence of process crashes

* Better scalability with concurrent data ops

t? Non-Blocking Garbage Collection

head

* Read-Copy Update w/o tail latency impact

LE | LE | LE

Virtual 3-4 - Logical 5-6

CAS
CAS commit?
LE | LE | LE
XLE|LE|LE|LE]
@9LE[Lel

33

Evaluation

Questions:

* How does MadFS perform on microbenchmarks!?

* How does MadFS perform on real-world applications!?
Compare MadFS running on ext4-DAX with

* ext4-DAX, [FAST ’16], [SOSP ’19]

Hardware: 8-core Intel Xeon 4215R CPU
| x 128GB Intel Optane PM

34

Evaluation: Concurrent 4 KB Random Read

e MadFS A ext4-DAX = NOVA SplitFS
100% Read

(0]

(@)
!

N
I

Throughput (GB/s)
N

o

Threads

Evaluation: Concurrent 4 KB Random Read

e MadFS

Throughput (GB/s)

8

A ext4-DAX = NOVA SplitFS

100% Read

Threads

Best performance: MadFS
Single thread

* 43% faster than ext4-DAX
* 41% faster than NOVA

All FS scale well: no writes

36

Evaluation: Concurrent 4 KB Random Overwrite

e MadFS A ext4-DAX = NOVA SplitFS

100% Write

2.5
52.0 -
215 -
£1.0-
c1.

50.5 -

£0.0

Threads

MadFS doesn’t update kernel metadata
Saturates device bandwidth w/ | thread
* 26% faster than

* 70% faster than ext4-DAX

High throughput w/ more threads

* Lock-free concurrency control

37

Evaluation: TPC-C on SQLite

Transaction processing benchmark on relational database

Characteristic: block-aligned writes followed by fsync

12
B MadFS
10 - B ext4-DAX
g - === NOVA
== SplitFS

Throughput (Kops/s)
(@)]

0 T T T T T T
New Payment Order Delivery Stock Mix
Order Status Level

Transaction Type

38

Evaluation: TPC-C on SQLite

Result: MadFS outperforms other filesystems
Mix: 26% faster than SplitFS, 58% faster than ext4-DAX

Throughput (Kops/s)

12
B MadFS
10 - B ext4-DAX
g - === NOVA
is=® SplitFS
6 -
4 -
2 -
0 -

New Payment Order Delivery Stock Mix
Order Status Level

Transaction Type

39

valuation: More in Paper

Multi-threaded benchmarks

e Contended concurrent write

* Concurrency control comparison
Metadata operations

* Open latency

* Garbage collection

Macro-benchmarks

e YCSB on LevelDB

® MadFS 4 extd-DAX = NOVA SplitFS

. 100% Write 50% Read + 50% Write

® OCC Spinlock » Mutex Rwlock
50% Read + 50% Write 95% Read + 5% Write

@25 g4 @4 G 8
i @
B2.0{ peearertereaes & 3 83 86
515 5 -] -1
a. a2 az aa
2, 2 2 s | B
g0 I UROR £ g H
305 3 1Nt g1 FER v
£0.0 £o £o £o

1 4 _8 12 16 1 8 12 16 1 4 _8 12 16 1 8 12 16

Threads Threads Threads Threads
& g 25%Read + 5% Write 100% Read Figure 10: MadFS with different concurrency control methods
@ g under uniform 4 KB read/write.
Se S
o J—

2 /’m\ 24 ﬁ: g s] HMmap ® Block Table M Others
£l et stteery & £ 16—
32 32 Y 64—
Eo Eo % 256]

1 4 _8 12 16 1 8 12 16 2 ¥

Threads Threads L 0 1000 2000 3000 4000 5000 6000

Figure 8: Councurrent 4 KB read/write with uniform offset. Time (us)

® MadFS 4 ext4-DAX = NOVA SplitFS
4 KB Write w/ Zipf 2 KB Write w/ Zipf

25 712

@

820 reeeeee * Cog
=15 pr 7"‘@'%
S5 os
s W
1 16

2.
B0l s G

505 §0,3
£0.0 £0.0

1 16

8 12 4 8 12
Threads Threads
Figure 9: Councurrent pure write with Zipfian offset (6 = 0.9).

Writes with Zipfian offset. To investigate how block-level
contention affects scalability, we designed the Zipfian experi-
ments. Each thread writes 4 KB or 2 KB at a block-aligned
offset sampled from a Zipfian distribution of 6 = 0.9, which
results in an access pattern skewed to the first few blocks.
Figure 9 shows the result. With 4 KB block-aligned write, the
result is similar to the 100% uniform write (Figure £). The
OCC algorithm used by MadFS does not block

Figure 11: Open latency breakdown. The file size is logical.

read-write 4 KB workload with uniform block-aligned offset.
Spinlock is completely in userspace and cannot handle lock-
owner crashes in the cross-process scenario. Mutex is set to
be robust so the kernel will release it when the owner dies.
Reader-writer lock does not support the robustness feature.
Only mutex provides the same robustness guarantees as OCC.

Figure 10 shows the result of this experiment. In both work-
loads, all four concurrency control methods start at the same
throughput with a single thread, and OCC surpasses the lock-
based concurrency control methods with more threads by a
wide margin. With OCC, multiple writers can write to thread-
private blocks concurrently without blocking other readers or
writers, thus yielding better scalability. The performance of
mutex drops from one thread to two threads since mutex puts
threads in sleep under contention. Spinlock performs better
than mutex as it busy-waits for the lock owner. Reader-writer
lock is at the bottom for the 50% read workload due to its

threads even if they write to the same block. The order of
concurrent writers is linearized during the commit. Since the
write is block-aligned, when the commit failed, MadFS only
needs to recommit the 8-byte log entry to the new tail and
never recopies data (§4.4). Other filesystems use locks at in-
ode granularity, so they do not show significant performance
differences between uniform access and Zipfian access. For
2 KB writes, MadFS and NOVA uses CoW and the thread
needs to recopy the 2 KB unaligned portion from the new
block if newly committed writes overlap with the current
one. Nevertheless, MadFS still achieves better performance
compared to NOVA. ext4-DAX shows contention with more
threads and performs worse than MadFS after 8 threads. Note
that only NOVA provides the same strong crash consistency
guarantee as MadFS.

Concurrency control. In addition to OCC (§4.4), we ex-
periment with three lock-based concurrency control meth-
ods for MadFS and compare their performance under mixed

ity, but it outperforms spinlock and mutex
for the 95% read workload as readers do not block each other.

5.3 Metadata Operations

Open. During file open, in addition to the open system call,
MadFS need to memory-map the file and replay the log to
build the block table. Memory mapping a file takes a fixed
cost of 1616 us plus 17 us per 2 MB huge page. The same
overhead applies to other userspace PM filesystems as well.
The log replay is efficient due to the compact log format,
taking only 15 ns for an inline entry and 21 ns for an indirect
one (with a 16-byte extended entry).

Figure 11 shows the time breakdown to open a file cre-
ated by repeated 4 KB appends. The majority of the time is
spent on memory-mapping the file, especially for small and
medium-sized files. Other times include the open system call.
Due to the open overhead, MadFS may not be suitable for
workloads with frequent file opens.

= MadFS
B ext4-DAX
=== NOVA
= SplitFS

Stock Mix
Level

ads on SQLite.

ilt configuration: 4
ctions. The size of
lementation of this

h of the individual
id. MadFS outper-
transactions since
d and do not incur
id, MadFS is 26%
AX, and 85% faster

tion which aims to
much as possible.
ssing for metadata
ae block mapping
consistency. Non-
crash-safe concur-
. Based on per-file
rary PM filesystem
juence of compact
irrency control for
1adFs yields better
SplitFs.

irns and the anony-
ck and comments.
NS-1838733, CNS-
tted by gifts from
Any opinions, find-
pressed in this ma-
it reflect the views

40

Conclusion

Metadata Embedding
* Many ops coupled with metadata updates = expensive kernel I/O stack

* Embed metadata into for efficient userspace management

Per-File Virtualization

* Push file functionalities into userspace as much as possible

MadFS: Metadata Embedded Filesystem

* Highly-scalable userspace PM filesystem with strong crash consistency

41

Questions

Backup Slides

MadFS: Log-Structured Metadata

Fix-sized 8-byte log entries + optional

Log Tail

LE | LE | LE

LE

LE | LE | LE | LE

!

Virtual 4-6 - Logical 7-9

8-Byte Log Entry

Virtual 1-64 - Logical 16-80
Virtual 65-67 = Logical 95-97

Y
Optional Extended Data
(Variable-Sized)

44

MadFS: Lock-Free Optimistic Concurrency Control

Use Compare-and-Swap to commit 8-byte log entry

Begin Execute Validate Commit
Record Starting Copy-on-Write “Compare” if “Swap” the Log
Log Talil Log Tail still Points Entry to the Tail

to an Empty Slot

45

Evaluation:YCSB on LevelDB

S
o
o

w

o

o
]

[
o

Throughput (Kops/s)
N
o
o

@ MadFS
W ext4-DAX
=== NOVA
=== SplitFS

o
]

o
l

A-load A B C D E-load E F
Workload

Workload C

* 5% faster than SplitFS

* 12% faster than ext4-DAX
Workload F

* 4% faster than SplitFS

* 7% faster than ext4-DAX

46

Related Work

PR el X ok d e S whutetet shntetatatat

Device

App Process E

— FS Lib £Q : E
App Process g Process = |
__FSLib :

o !

\ l @)
'/"- B e 1 :
l OS Kernel)

- ———————————————— i _———— L ——— —— —

Aerie

Coffe)

data

Coffer

.

Coffer\q

(a.frm) @.MDY) (a.MDI) (dbb]

(b.frm) b.MDY) (b.MDI)

Coffer

(c.frm) £.MDY) (c.MDI)

Coffer

47

