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The Long History of Timing Attacks

Cooperative attacks — apply to:

Mandatory Access Control (MAC) systems
[Kemmerer 83, Wray 91]

Decentralized Information Flow Control (DIFC)
[Efstathopoulos 05, Zeldovich 06]

Non-cooperative attacks — apply to:

Processes/VVMs sharing a CPU core
[Percival 05, Wang 06, Aclicmez 07, ...]

Including VM configurations typical of clouds
[Ristenpart 09]




Cooperative Attacks: Example

Trojan leaks secret information by modulating a
timing channel observable by unclassified app

use a lot, Timeshared
use a little Secret Level Host

Unclassified Level

how fast am Consbpirina A
| running? PITITS PP




Non-Cooperative Attacks: Example

Apps unintentionally modulate shared resources
to reveal secrets when running standard code
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Crypto (AES, RSA, ...)
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Timing Attacks in the Cloud

The cloud exacerbates timing channel risks:
Routine co-residency
Massive parallelism
No intrusion alarms — hard to monitor/detect
Partitioning defenses defeat elasticity

“Determinating Timing Channels in Compute Clouds”
[CCSW '10]




Leak-Plugging Approaches

Two broad classes of existing solutions:

Tweak specific algorithms, implementations
Equalize AES path lengths, cache footprint, ...
Demand-insensitive resource partitioning

Requires new or modified hardware in general
Partition CPU cores, cache, interconnect, ...
Can't oversubscribe, stat-mux resources
Not economically feasible in an “elastic” cloud!




Information Flow Control

Explicitly /label information, constrain propagation

Old idea, recently (re-)popularized

DIFC, Asbestos/HiStar/Flume

Label variables, processes, messages, etc.
So far, IFC avoids the timing channel issue

How would one “label time”?

What would we do with “timing labels™?
Hard to prevent programs from “taking time™!

But could IFC apply to timing channels too?
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Adapting IFC to Timing Analysis

Key idea: we need two kinds of labels

State labels attached to explicit program state

Represent ownership of information in the
bits of a variable, message, process, etc.

Time Labels attached to event channels

Represent ownership of information affecting
time or rate events occur in a program

TIFC = Timing Information Flow Control
Analyze, constrain both state & timing leaks
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A “Timing-Hardened Cloud”
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Flume IFC Model

Flume IFC model summary:
Tags represent ownership/taint: “Alice”, “Bob”
Labels are sets of tags:

{Alice,Bob} = “contains Alice's & Bob's data”

Capabilities enable adding/removing tags

e.g., If process P holds capability {Alice-},
P can declassify (remove) the Alice tag

P can send data to Q iff (Lp \ Lg) S (Cp U C*q)




Adding Timings Labels to IFC

Timing Tag is a tag with a frequency
Tag A indicates a timing channel might leak
A's information at up to f bits per second

Tag A_ indicates a timing channel might leak
A's information at arbitrarily high rate

Labels can contain both state and timing tags
Message channel labeled {A/B;} indicates:

Message bits tained with A's info

Message arrival events in channel
tainted by B's info at up to rate f
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Example 1: Dedicated Resources

Trivial case: physical partitioning of resources
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Informal “"Schedule Analysis’
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Demand-Insensitive Timesharing

Reservation-Based Scheduler

{-I-}
Control% A no demand
{-/-}6 x feedback
Shared Compute Server
Jobé EResult Job : EResult
- S{AA) - -{B/B.}
AA LY g VA B/B,} =
| WALy {B/B.} - §
Alice's Gateway Bob's Gateway
{A+,A} {B*,B-}
Alice Bob
\__ — S e .




Informal "Schedule Analysis”
|

Alice's job completion time
still not dependent on Bob's job

i
\\\\\\\\\\\ ///////////
_ S . %,
Submit S Submit %,
D : Z
| = Z
Al = Done
-
ICe s= {A/Aoo}

WA} oy

o
o9
OS5 | mesm |
-CIOJ 8 > |

o = |

Sp unused

n - capacity 1

M Bob's Job - I cob's Job
Time — » Time — »
| Bob's job is long

Bob's job is short
e ———




Timing Control in Elastic Clouds

Need two additional facilities:

System-enforced deterministic execution
[OSDI '10]

OS/VMM ensures that a job's outputs depend
only on job's explicit inputs

Pacing queues

Input jobs/messages at any rate
Output jobs/messages on a fixed schedule




Elastic Cloud Scenario
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Jobs: In Anytime, Out on a Schedule

For each customer (e.g., Alice):
Deterministic execution ensures job output bits
depend only on job input bits: O; = f(l;)
Job outputs produced in same order as inputs

At each “clock tick”, paced queue releases
either next job output or says not ready yet

The single bit of information per clock tick
that might leak other users' information
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Informal "Schedule Analysis”
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Key Challenges/Questions

Formalize full TIFC model
Potentially applicable at systems or PL levels

| 1

Integrate Myers
Build TIFC-enforcing prototype

predictive mitigation” ideas

Ongoing, based on Determinator [OSDI '10]
Explore flexibility, applicability of model

Can model support interactive applications?
Can model support transactional apps?




Conclusion

TIFC = IFC extended to timing channels

Several “timing-hardening” approaches
Physical partitioning
Demand-insensitive timesharing
Elastic computing via deterministic job model
First general approach that could be both:
Feasible on unmodified hardware
Suitable for stat-muxed clouds

Further information: http://dedis.cs.yale.edu
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