

Plugging Side-Channel Leaks
with Timing Information Flow Control

Bryan Ford
Yale University

http://dedis.cs.yale.edu/

USENIX HotCloud, June 13, 2012

http://dedis.cs.yale.edu/

The Long History of Timing Attacks

● Cooperative attacks – apply to:
– Mandatory Access Control (MAC) systems

[Kemmerer 83, Wray 91]

– Decentralized Information Flow Control (DIFC)
[Efstathopoulos 05, Zeldovich 06]

● Non-cooperative attacks – apply to:
– Processes/VMs sharing a CPU core

[Percival 05, Wang 06, Acıiҫmez 07, …]

– Including VM configurations typical of clouds
[Ristenpart 09]

Cooperative Attacks: Example

Trojan leaks secret information by modulating a
timing channel observable by unclassified app

Secret Level
Trojan App

MAC/DIFC Protection Boundary

Unclassified Level
Conspiring App

use a lot,
use a little

how fast am
I running?

Timeshared
Host

Non-Cooperative Attacks: Example

Apps unintentionally modulate shared resources
to reveal secrets when running standard code

Acme Data, Inc.
Crypto (AES, RSA, ...)

Discretionary Protection Boundary

Eviltron
Passive Attacker

key-dependent
usage patterns

watch memory
access timing

Cloud
Host

Timing Attacks in the Cloud

The cloud exacerbates timing channel risks:

1.Routine co-residency

2.Massive parallelism

3.No intrusion alarms → hard to monitor/detect

4.Partitioning defenses defeat elasticity

“Determinating Timing Channels in Compute Clouds”
[CCSW '10]

Leak-Plugging Approaches

Two broad classes of existing solutions:
● Tweak specific algorithms, implementations

– Equalize AES path lengths, cache footprint, …

● Demand-insensitive resource partitioning
– Requires new or modified hardware in general

● Partition CPU cores, cache, interconnect, …

– Can't oversubscribe, stat-mux resources
➔ Not economically feasible in an “elastic” cloud!

Information Flow Control

Explicitly label information, constrain propagation
● Old idea, recently (re-)popularized

– DIFC, Asbestos/HiStar/Flume

– Label variables, processes, messages, etc.

● So far, IFC avoids the timing channel issue
– How would one “label time”?

– What would we do with “timing labels”?
● Hard to prevent programs from “taking time”!

● But could IFC apply to timing channels too?

Adapting IFC to Timing Analysis

Key idea: we need two kinds of labels
● State labels attached to explicit program state

– Represent ownership of information in the
bits of a variable, message, process, etc.

● Time Labels attached to event channels
– Represent ownership of information affecting

time or rate events occur in a program

TIFC ≡ Timing Information Flow Control

● Analyze, constrain both state & timing leaks

A “Timing-Hardened Cloud”

Internet:
Public

Timing Domain

Customer A's
Private Timing Domain

Trusted, Shared
Timing Domain

Customer A's Job

Timing
Firewall

Remote
Customer's
Job

Timing
Firewall

Public
Infrastructure Cloud Provider's Computing/Network Infrastructure

unrestricted
interaction Physically isolated

timing domains

Flume IFC Model

Flume IFC model summary:
● Tags represent ownership/taint: “Alice”, “Bob”
● Labels are sets of tags:

– {Alice,Bob} ≡ “contains Alice's & Bob's data”

● Capabilities enable adding/removing tags
– e.g., If process P holds capability {Alice-},

P can declassify (remove) the Alice tag

P can send data to Q iff (LP \ LQ) ⊆ (C-
P ∪ C+

Q)

Adding Timings Labels to IFC

● Timing Tag is a tag with a frequency

– Tag Af indicates a timing channel might leak
A's information at up to f bits per second

– Tag A indicates a timing channel might leak
A's information at arbitrarily high rate

● Labels can contain both state and timing tags

– Message channel labeled {A/Bf} indicates:

● Message bits tained with A's info
● Message arrival events in channel

tainted by B's info at up to rate f

Example 1: Dedicated Resources

Alice's
Gateway
{A+,A-}

Bob's
Gateway
{B+,B-}

Alice Bob

Cloud Provider's Infrastructure

Job
{A/A∞}

Result
{A/A∞}

Alice's
Compute

Server

Bob's
Compute

Server

Job
{B/B∞}

Result
{B/B∞}

Trivial case: physical partitioning of resources

Informal “Schedule Analysis”

Bob's (Short) Job

Time unused
capacity

Alice
Submits
{A/A∞}

C
om

pu
te

 C
or

e
S

ch
ed

ul
e

s

Job
Done
{A/A∞}

Alice's
Job

Bob's (Long) Job

Time unused
capacity

Alice
Submits
{A/A∞}

C
om

pu
te

 C
or

e
S

ch
ed

ul
e

s

Job
Done
{A/A∞}

Alice's
Job

Bob's job is “long”

Alice's job
completion time
not dependent

on Bob's job

Bob's job is “short”

Demand-Insensitive Timesharing

Alice's Gateway
{A+,A-}

Bob's Gateway
{B+,B-}

AliceAlice Bob

Job
{A/A∞}

Result
{A/A∞}

Shared Compute Server

Job
{B/B∞}

Result
{B/B∞}

Reservation-Based Scheduler
{-/-}

Control
{-/-}

no demand
feedback

Informal “Schedule Analysis”

Bob's Job

Time

unused
capacity

Bob's Job

Alice's
Job

Time

Submit
{A/A∞}

S
ha

re
d

C
o

re
S

ch
ed

ul
e

Done
{A/A∞}Alice's

Job

Submit
{A/A∞}

Done
{A/A∞}

Alice's job completion time
still not dependent on Bob's job

Bob's job is short Bob's job is long

Timing Control in Elastic Clouds

Need two additional facilities:
● System-enforced deterministic execution

[OSDI '10]
– OS/VMM ensures that a job's outputs depend

only on job's explicit inputs

● Pacing queues
– Input jobs/messages at any rate

– Output jobs/messages on a fixed schedule

Elastic Cloud Scenario

Alice's Gateway
{A+,A-,Bf

-}
Bob's Gateway

{B+,B-,Af
-}

AliceAlice Bob

Job
{A/A∞}

Result
{A/A∞,B∞}

Shared Deterministic
 Compute Server

Job
{B/B∞}

Result
{B/A∞,B∞}

Demand Scheduler
{A,B/A∞,B∞}

Control
{A,B/A∞,B∞}

Demand
{A,B/A∞,B∞}

Pacer
freq f

Pacer
freq f

Result
{A/Af,Bf}

Job
{B/B∞}

Result
{B/Af,Bf}

Jobs: In Anytime, Out on a Schedule

For each customer (e.g., Alice):
● Deterministic execution ensures job output bits

depend only on job input bits: Oj = f(Ij)

● Job outputs produced in same order as inputs
● At each “clock tick”, paced queue releases

either next job output or says not ready yet
– The single bit of information per clock tick

that might leak other users' information

Informal “Schedule Analysis”

Bob's (Short) Job

Time

Bob's (Long) Job

Time

Alice's
Job
{A/A∞}

C
om

pu
te

S
ch

ed
ul

e

Result
{A/A∞,B∞}

Alice's
Job
{A/A∞}

Result
{A/A∞,B∞}

(b) Schedule: Bob's job short (b) Schedule: Bob's job long

Paced result
at tick 3
{A/Af,Bf}

P
ac

er
S

ch
ed

ul
e

Paced result
at tick 4
{A/Af,Bf}

Key Challenges/Questions

● Formalize full TIFC model
– Potentially applicable at systems or PL levels

– Integrate Myers' “predictive mitigation” ideas

● Build TIFC-enforcing prototype
– Ongoing, based on Determinator [OSDI '10]

● Explore flexibility, applicability of model
– Can model support interactive applications?

– Can model support transactional apps?

Conclusion

● TIFC = IFC extended to timing channels
● Several “timing-hardening” approaches

– Physical partitioning

– Demand-insensitive timesharing

– Elastic computing via deterministic job model

● First general approach that could be both:
– Feasible on unmodified hardware

– Suitable for stat-muxed clouds

Further information: http://dedis.cs.yale.edu

http://dedis.cs.yale.edu/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

