Provenance Management in Databases under Schema Evolution

Shi Gao, Carlo Zaniolo Department of Computer Science University of California, Los Angeles

Provenance under Schema Evolution

- Modern information systems, particularly big science projects, undergo frequent database schema changes.
 - Mediawiki, 323 schema versions in 9 years
 - Atutor, 216 schema versions in 7 years
 - KtDMS, 105 schema versions in 6 years
- Therefore, we need an integrated provenance management for both data and metadata under schema evolution.

Motivating Example

Employee

<i>V</i> ₁	ID	Name	Name Department	
	100	Sam	CS	3000

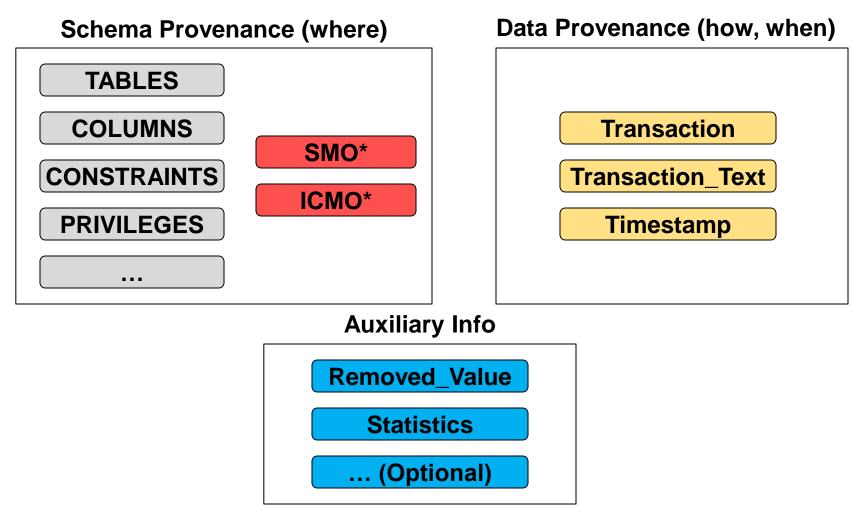
Data Update: INSERT INTO Employee VALUES (200, 'John', 'EE', 4000)
Schema Change: RENAME COLUMN Pay IN Employee To Salary
DECOMPOSE TABLE Employee INTO Employee_Info(ID, Name,
Department), Employee_Salary(ID, Salary)

Employee_Info

Employee_Salary

	ID	Name	Department	ID	Salary
V_2	100	Sam	CS	100	3000
	200	John	EE	200	4000

How to connect the provenance of data created under different schemas?


AM&PM System

- Archived Metadata & Provenance Manager
- Goal: Manage the combined provenance of data and metadata under schema evolution
 - Extend the SQL Information Schema to archive the provenance of metadata
 - Provide a timestamp representation of the provenance database
 - □ Facilitate the expression of complex temporal query

Model

- A relational model that stores:
 - Data Provenance
 - The information of data updates and transactions applied to the content of database
 - Schema Provenance
 - The information of past schema versions and the history of schema evolution
 - Auxiliary Information
 - e.g. the removed values and database statistics

Model

* Schema Modification Operators(SMO) and Integrity Constraints Modification Operators(ICMO) [H. Moon 2008]

Model

Tables			; ¦ SI	SMO				Transaction				
<u>v</u>	Name	TS		ID	Text	Source	Target	TS	ID	User	TS	
1	Employee	t0		1	<u>smo1</u>	V1	V2	t2	1	Арр	t1	
2	Employee_info	t3		2	<u>smo2</u>	V1	V2	t3	Trans	saction_	Text	
3	Empoyee_Salary	t3		l IC	ICMO ID Text							
Table_Constraints		<u> </u>	Text	Source	Target	TS		1	<u>tran</u>			
Table_Privileges									Employee_Salary_Timestamp			
Columns			i i i <u>smo1</u> : RENAME COLUMN Payment					Employee_Info_Timestamp				
Column_Privileges				IN Employee To Salary								
Version			smo2 : DECOMPOSE Table Employee					tran:INSERT INTO Employee				
			Dep	INTO Employee_Info(ID, Name, Department), Employee_Salary(ID, Salary)				VALUES (200, 'John', 'EE', 4000)				
Information Schema				Schema Evolution			Data Provenance					

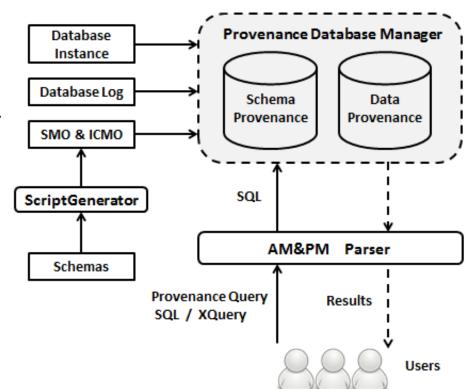
Previous

Provenance Queries

Data Provenance Queries

 Trace the provenance of data. For example, when the data is inserted and which transactions help generate the data

Schema Provenance Queries


Trace the provenance of schema elements (tables and columns)

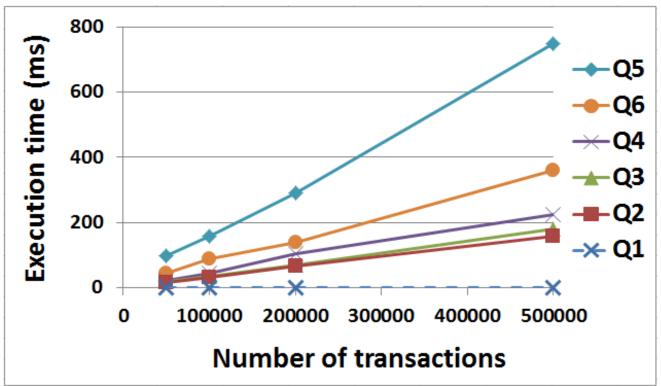
Queries on Statistics

 Statistical queries about the database content and schema

Architecture

- Backend Database
 MySQL 5.1
- Provenance DB Manager
 - Parse input data
 - Construct provenance DB
- AM&PM Parser
 - Translate XQuery to SQL
 [F. Wang 2008]
 - Check syntax

Experiments


- We perform some preliminary experiments to evaluate the execution time of provenance queries on AM&PM provenance database
- Datasets
 - Synthetic Dataset: California Traffic

Experiments

Query	Туре	Description
Q1	when	Find the creation time of the tuple with id 2357 in highway accident
Q2	how	Find the transaction which generates the tuple with id 19009 in highway condition
Q3	aggregate	Find the number of accidents happening on 04/02/2012
Q4	aggregate	Find the number of highway condition records on 04/03/2012
Q5	temporal join	Find the ids of accidents happening in the area of West Los Angeles between "04/04/2012 18:00:00" and "04/04/2012 23:00:00"
Q6	temporal join	Find the descriptions of highway condition updates happening in the area of Central LA between "04/04/2012 18:00:00" and "04/04/2012 23:00:00"

Table: Data Provenance Queries for Evaluation

Experiments

The performance of data provenance queries

Dataset: California Traffic

The values are sampled from a small real-world traffic dataset

Conclusion

- AM&PM provides a simple way to support provenance management under schema evolution.
- Provenance queries on both data provenance and schema provenance are efficiently supported.
- Ongoing work:
 - Column store
 - Provenance query rewriting

....

Thank You!

Reference

- [H. Moon 2008] H. J. Moon, C. A. Curino, A. Deutsch, C.-Y. Hou, and C. Zaniolo. Managing and querying transaction-time databases under schema evolution, VLDB, 2008.
- [F. Wang 2008] Fusheng Wang, Carlo Zaniolo, and Xin Zhou. Archis: an xml-based approach to transaction-time temporal database systems. The VLDB Journal, 17(6):1445-1463, November 2008.
- [J. Cheney 2009] Provenance in Databases: Why, How, and Where, James Cheney and Laura Chiticariu and Wang-Chiew Tan (2009), Foundations and Trends® in Databases: Vol. 1: No 4, pp 379-474
- Schema Evolution Benchmark: C. Curino and C. Zaniolo. Pantha rhei benchmark datasets. <u>http://yellowstone.cs.ucla.edu/schema-</u> <u>evolution/index.php/Benchmark_home</u>