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MapReduce: Huh?

• MapReduce: Express computation as:

• map(key, val) → [(key1, val1)...]

• reduce([(key1, val1)...]) → [(key, val)...]

• Logically:

split map fetch reduce
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HadoopProv: What?

• Provenance support in MapReduce (Hadoop)

• Key-value tracking in map() and reduce()

• Premise: For any key-value record, what were the 
key-value pairs involved in its creation?
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HadoopProv: Why?

1.Verification, validation of key-pair values

2.Optimize subset processing:

A)Incremental

B)Additional

3.Self-tuning system
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HadoopProv: What's Different?

1.Tight, transparent framework integration

2.Eager provenance logging

3.No shuffling of provenance metadata

4.Lazy provenance graph construction
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HadoopProv: How?

• map()

mapP1: <key-in, value> P2:<key-out, value>

(P1, P2)

Provenance record

(P2)

Index
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HadoopProv: How?

• reduce()

fetch

unsorted

merge

sorted

reduce

(MapID) P1:<key-in, value>

Provenance record

MapID record

P2:<key-out, value>

(MapID, P1, P2)
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HadoopProv: To What Extent?

• Wordcount: 60, 90, 300 GB Wikipedia subset

• Spatial Overhead
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HadoopProv: To What Extent?

• Wordcount: 60, 90, 300 GB Wikipedia subset

• Temporal Overhead
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HadoopProv: What Next?

• Optimize implementation: Spatial, temporal overhead

• Feedback between provenance and MapReduce phases

• Prove usefulness:

• Real-world use-cases

• Trade-off: Re-computation vs Provenance Reconstruction
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HadoopProv: Take-Aways

1.Key-value lineage logging (MapReduce) feasible

2.Delaying provenance reconstruction until 
absolutely needed feasible

3.Delayed provenance reconstruction could have 
tangible performance  benefits

4.FRESCO @ Cambridge developing these ideas
(google “FRESCO +  Computer Lab Cambridge”)
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