
1

HadoopProv: Towards Provenance As A First Class
Citizen in MapReduce

Sherif Akoush, Ripduman Sohan, Andy Hopper

Computer Laboratory

2

MapReduce: Huh?

• MapReduce: Express computation as:

• map(key, val) → [(key1, val1)...]

• reduce([(key1, val1)...]) → [(key, val)...]

• Logically:

split map fetch reduce

3

HadoopProv: What?

• Provenance support in MapReduce (Hadoop)

• Key-value tracking in map() and reduce()

• Premise: For any key-value record, what were the
key-value pairs involved in its creation?

4

HadoopProv: Why?

1.Verification, validation of key-pair values

2.Optimize subset processing:

A)Incremental

B)Additional

3.Self-tuning system

5

HadoopProv: What's Different?

1.Tight, transparent framework integration

2.Eager provenance logging

3.No shuffling of provenance metadata

4.Lazy provenance graph construction

6

HadoopProv: How?

• map()

mapP1: <key-in, value> P2:<key-out, value>

(P1, P2)

Provenance record

(P2)

Index

7

HadoopProv: How?

• reduce()

fetch

unsorted

merge

sorted

reduce

(MapID) P1:<key-in, value>

Provenance record

MapID record

P2:<key-out, value>

(MapID, P1, P2)

8

HadoopProv: To What Extent?

• Wordcount: 60, 90, 300 GB Wikipedia subset

• Spatial Overhead

9

HadoopProv: To What Extent?

• Wordcount: 60, 90, 300 GB Wikipedia subset

• Temporal Overhead

10

HadoopProv: What Next?

• Optimize implementation: Spatial, temporal overhead

• Feedback between provenance and MapReduce phases

• Prove usefulness:

• Real-world use-cases

• Trade-off: Re-computation vs Provenance Reconstruction

11

HadoopProv: Take-Aways

1.Key-value lineage logging (MapReduce) feasible

2.Delaying provenance reconstruction until
absolutely needed feasible

3.Delayed provenance reconstruction could have
tangible performance benefits

4.FRESCO @ Cambridge developing these ideas
(google “FRESCO + Computer Lab Cambridge”)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

