
LOOM: Optimal Aggregation
Overlays for In-Memory Big Data

Processing

William Culhane, Kirill Kogan, Chamikara Jayalath, Patrick Eugster

Department of Computer Science, Purdue University

Presented at HotCloud ‘14

June 18, 2014

Talk Outline

• Motivation and Background

• Model

• Heuristics

• Implementation

• Experimental Setup and Results

• Conclusions and Future Work

Intro | Motivation | Model | Heuristics| Implementation | Experiments | Conclusions 2

Motivation and Background

• In-memory Big Data, e.g. RDDs [Zaharia et al.;NSDI

2012] Presto [Venkataraman et al.;Eurosys ‘13]

• Aggregation specific (MapReduceMerge, Yang et al.,
SIGMOD ‘07)

• Minimize latency of tree overlay

• Mathematically modeled optima [Kim et al.;IEEE
Transactions on Aerospace and Electronic Systems 32, 2
(‘96)]

• Minimal analysis and configuration

3 Intro | Motivation | Model | Heuristics | Implementation | Experiments | Conclusions

Model

• Compute-Aggregate 𝑔(𝑓 𝑥0 ⋯𝑓 𝑥𝑛)

• Customizable fanout

4 Intro | Motivation | Model | Heuristics| Implementation | Experiments | Conclusions

Examples

• Merge sorted elements

• Min/Max/Average

• Word count

• Top-k matching

5 Intro | Motivation | Model | Heuristics| Implementation | Experiments | Conclusions

Aggregation Function Rules

• Associative
𝑔(𝑔 𝑥 , 𝑥 ′) ≡ 𝑔(𝑥 , 𝑥 ′)

• Cumulative
𝑔(𝑔 𝑥 , 𝑔(𝑥 ′)) ≡ 𝑔(𝑥 , 𝑥 ′)

• Commutative
𝑔(𝑥 , 𝑥 ′) ≡ 𝑔(𝑥 ′, 𝑥)

6 Intro | Motivation | Model | Heuristics | Implementation | Experiments | Conclusions

Assumptions

• Assumptions on latency, not correctness

• Trees – each input included exactly once

• Full and balanced trees

• Monotonic aggregation with respect to size

• Homogenous levels

• Monotonic and constant ratio size changes

7 Intro | Motivation | Model | Heuristics| Implementation | Experiments | Conclusions

Variables

• 𝑛 – Number of leaf nodes/inputs

• 𝑑 – Fanout of aggregation tree

• 𝑥 – Set of inputs (output from computation or
prior aggregation)

• 𝑔(𝑥) – Aggregation on 𝑥

• 𝑔𝑐 𝑥 – Time cost of aggregation function

• 𝑦0/𝑦 – Ratio of output size to single input size

8 Intro | Motivation | Model | Heuristics | Implementation | Experiments | Conclusions

Heuristics

𝒚𝟎 Optimal Fanout
Sublin.
𝒈𝒄(𝒙)

Linear
𝒈𝒄(𝒙)

Superlin.
𝒈𝒄(𝒙)

𝑦0 < 1 2 √ √

𝑦0 = 1 𝑒 √ *

1 < 𝑦0 < 𝑛
min (𝑛,

(1 − log𝑛 𝑦0)
− log𝑦0 𝑛)

√

𝑦0 > 𝑛 𝑛 √ √ √

√ - Proven Optima
* - Proven Near-Optima

9 Intro | Motivation | Model | Heuristics | Implementation | Experiments | Conclusions

Implementation

• Independent aggregation subsystem

10 Intro | Motivation | Model | Heuristics | Implementation | Experiments | Conclusions

• Fifth main operation parallelAggregate()
in FlumeJava [Chambers et al.;PLDI ‘10]

Experimental Setup

• Amazon EC2

• Maintained assumptions (full and balanced)

• Microbenchmarks
– Generated data and simulated linear aggregation

– 16 leaves

• Real world applications
– Word count and top-k match on Yahoo! Hadoop

cluster logs

– 16 and 64 leaves

11 Intro | Motivation | Model | Heuristics | Implementation | Experiments | Conclusions

Results (Microbenchmarks – 1/2)

12 Intro | Motivation | Model | Heuristics | Implementation | Experiments | Conclusions

Results (Microbenchmarks - 2/2)

13 Intro | Motivation | Model | Heuristics | Implementation | Experiments | Conclusions

Results (Applications)

14 Intro | Motivation | Model | Heuristics | Implementation | Experiments | Conclusions

What we have done

• Codified compute-aggregation definition

• Mathematically modeled aggregation time

• Provided heuristics for lightweight
optimization

• Results usable even without our system with
known 𝑦0

• Implemented subsystem with FlumeJava

• Experimentally validated modeled optima

15 Intro | Motivation | Model | Heuristics | Implementation | Experiments | Conclusions

What we are going to do

• Study the currently unproven cases

• Determine a good way to find/specify 𝑦0
(preferably automatically)

• Expand the limits of the testing

• Deal with broken assumptions

• Deal with heterogeneity

• Work on streaming inputs

16 Intro | Motivation | Model | Heuristics | Implementation | Experiments | Conclusions

Questions?

17

