LOOM: Optimal Aggregation Overlays for In-Memory Big Data Processing

William Culhane, Kirill Kogan, Chamikara Jayalath, Patrick Eugster Department of Computer Science, Purdue University

> Presented at HotCloud '14 June 18, 2014

Talk Outline

- Motivation and Background
- Model
- Heuristics
- Implementation
- Experimental Setup and Results
- Conclusions and Future Work

Motivation and Background

- In-memory Big Data, e.g. RDDs [Zaharia et al.;NSDI 2012] Presto [Venkataraman et al.;Eurosys '13]
- Aggregation specific (MapReduceMerge, Yang et al., SIGMOD '07)
- Minimize latency of tree overlay
- Mathematically modeled optima [Kim et al.; IEEE Transactions on Aerospace and Electronic Systems 32, 2 ('96)]
- Minimal analysis and configuration

Model

• Compute-Aggregate $g(f(x_0) \cdots f(x_n))$

• Customizable fanout

(a) Fanout = 2

(b) Fanout = 4

(c) Fanout = 16

Examples

- Merge sorted elements
- Min/Max/Average
- Word count
- Top-*k* matching

Aggregation Function Rules

Assumptions

- Assumptions on latency, not correctness
- Trees each input included exactly once
- Full and balanced trees
- Monotonic aggregation with respect to size
- Homogenous levels
- Monotonic and constant ratio size changes

Variables

- *n* Number of leaf nodes/inputs
- d Fanout of aggregation tree
- \overline{x} Set of inputs (output from computation or prior aggregation)
- $g(\bar{x})$ Aggregation on \bar{x}
- $g^{c}(\bar{x})$ Time cost of aggregation function
- y_0/y Ratio of output size to single input size

Heuristics

Уo	Optimal Fanout	Sublin. $g^c(\overline{x})$	Linear $g^c(\overline{x})$	Superlin. $g^c(\overline{x})$
$y_0 < 1$	2		\checkmark	\checkmark
$y_0 = 1$	е		\checkmark	*
$1 < y_0 < n$	$\min(n, (1 - \log_n y_0)^{-\log_{y_0} n})$		\checkmark	
$y_0 > n$	n	\checkmark	\checkmark	\checkmark

√ - Proven Optima
* - Proven Near-Optima

Intro | Motivation | Model | Heuristics | Implementation | Experiments | Conclusions

Implementation

Independent aggregation subsystem

• Fifth main operation parallelAggregate() in FlumeJava [Chambers et al.;PLDI '10]

Experimental Setup

- Amazon EC2
- Maintained assumptions (full and balanced)
- Microbenchmarks
 - Generated data and simulated linear aggregation
 - 16 leaves
- Real world applications
 - Word count and top-k match on Yahoo! Hadoop cluster logs
 - 16 and 64 leaves

Results (Microbenchmarks – 1/2)

Results (Microbenchmarks - 2/2)

Results (Applications)

Intro | Motivation | Model | Heuristics | Implementation | Experiments | Conclusions

What we have done

- Codified compute-aggregation definition
- Mathematically modeled aggregation time
- Provided heuristics for lightweight optimization
- Results usable even without our system with known y_0
- Implemented subsystem with FlumeJava
- Experimentally validated modeled optima

What we are going to do

- Study the currently unproven cases
- Determine a good way to find/specify y₀
 (preferably automatically)
- Expand the limits of the testing
- Deal with broken assumptions
- Deal with heterogeneity
- Work on streaming inputs

Questions?