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Motivation and Background

In-memory Big Data, e.g. RDDs [zaharia et al.;NSDI
2012] Presto [Venkataraman et al.;Eurosys ‘13]

Aggregation specific (MapReduceMerge, Yang et al.,
SIGMOD “07)

Minimize latency of tree overlay

Mathematically modeled optima [kim et al.;IEEE
Transactions on Aerospace and Electronic Systems 32, 2

(96)]
Minimal analysis and configuration

Motivation



Model
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Examples

Merge sorted elements
Min/Max/Average
Word count

Top-k matching

Model



Aggregation Function Rules
* Associative
9(g(x),x") = g(x,x") SXK R
* Cumulative
9(g(®), g(&)) = g%, 1) & /C\

e Commutative
g(x,x") = g(x', x)

Model



Assumptions

Assumptions on latency, not correctness
Trees — each input included exactly once
Full and balanced trees

Monotonic aggregation with respect to size
Homogenous levels

Monotonic and constant ratio size changes

Model



Variables

n — Number of leaf nodes/inputs
d — Fanout of aggregation tree

X — Set of inputs (output from computation or
prior aggregation)

g(x) — Aggregationon X
g°(x) — Time cost of aggregation function
Yo/Yy — Ratio of output size to single input size



Heuristics
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Implementation

* Independent aggregation subsystem
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* Fifth main operation parallelaggregate ()
in Flumelava [chambers et al.;:PLDI “10]

Implementation



Experimental Setup

* Amazon EC2

* Maintained assumptions (full and balanced)

* Microbenchmarks
— Generated data and simulated linear aggregation
— 16 leaves

e Real world applications

— Word count and top-k match on Yahoo! Hadoop
cluster logs

— 16 and 64 leaves

Experiments
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Results (Microbenchmarks — 1/2)
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Results (Microbenchmarks - 2/2)
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What we have done

* Codified compute-aggregation definition
 Mathematically modeled aggregation time

* Provided heuristics for lightweight
optimization

e Results usable even without our system with
Known Yy,

* Implemented subsystem with Flumelava
* Experimentally validated modeled optima

Conclusions



What we are going to do

e Study the currently unproven cases

* Determine a good way to find/specify y,

(preferably automatically)
Expand the limits of the testing
Deal with broken assumptions
Deal with heterogeneity

Work on streaming inputs



Questions?



