A Way Forward:
Enabling Operating
System Innovation in
the Cloud

Dan Schatzberg, James Cadden, Orran Krieger, Jonathan Appavoo
Boston University

There has been a lot of
innovation in cloud computing

| ihadaap "»m@* %

cassandra

In contrast, there has been relatively
ittle innovation in the operating system

Do operating systems matter?

Do operating systems matter? Yes!

Memcached Latency

Component Description Mean latency (us) | 99 %ile latency (us) | Overall share
DC Fabric Propagation 'delay <1 - -
Single Switch 1-4 40-60 1%
Network Path’ 6 150 7 %
Net. serialization 1.3 1.3 1.4 %
Endhost DMA 2.6 2.6 3 %
Kernel (incl. lock contention) 76 1200-2500 86-95 %
Application Application” 2 3 2 %
Total latency 88 1356-2656 100 %

Reproduced from Kapoor et al. Chronos predictable low latency for data

center applications. SOCC 2012

How can we enable OS innovation in the cloud?

Modify Existing OS Clean Slate

Modify Existing OS Clean Slate

Pros

V' Large software ecosystem

Modify Existing OS Clean Slate

Pros

V' Large software ecosystem

Cons

- Large and complex

Modify Existing OS Clean Slate

Pros

V' Large software ecosystem v Complete control

Cons

- Large and complex

Modify Existing OS Clean Slate
Pros
V' Large software ecosystem v Complete control
Cons
- Large and complex - Need to reproduce
legacy functionality

A Way Forward

Typical Cloud Web Application

Memcached

Typical Cloud Web Application

Memcached

—

Distributed application
On demand provisioning

Isolated (virtual) hardware
for each application

What is the role of the operating system?

Typical Cloud Web Application

Memcached

8

-

The OS doesn’t need to:

-

Apaché inl r
Distributed application - | Support multiple users

On demand provisioning

Isolated (virtual) hardware
for each application

Typical Cloud Web Application

Memcached

—

The OS doesn’t need to:

-

Apaché multiol r
® Distributed application ~ | Support multiple users

2. Arbitrate and balance

® On demand provisioning
competitive resource usage

® |solated (virtual) hardware
for each application

Typical Cloud Web Application

Memcached

—

The OS doesn’t need to:

Distributed application | Support multiple users
2. Arbitrate and balance

On demand provisioning
competitive resource usage

Isolated (virtual) hardware
for each application 3. Use a symmetric structure

to provide OS functionality

Typical Cloud Web Application

Memcached

Typical Cloud Web Application

Memcached

Typical Cloud Web Application

Memcached

1

Library OS:
functionality linked
into application
address space

Typical Cloud Web Application

Memcached

Typical Cloud Web Application

&
MySQL = Memcached
Java

Typical Cloud Web Application

Memcached

Typical Cloud Web Application

Memcached

But what about

* logging
* management (ps, kill)
* configuration

* tooling

Typical Cloud Web Application

N S
MysaL JB/—'E Memcached
But what about
Offload non-

* logging
* management (ps, kill)
* configuration

* tooling

performance critical
functionality to general
purpose OS

Typical Cloud Web Application

W\ K¢ >
S—= Memcached

Typical Cloud Web Application

MysaoLu — Memcached

Apaché

MultiLibOS

A MultiLibOS is a tightly integrated composition
of general purpose operating systems and
specialized library operating systems

There are many different ways a
MultiLibOS might be integrated

There are many different ways a
MultiLibOS might be integrated

* Distributed Shared Memory
* Message Passing
* Distributed Namespace (9p)

The MultiLibOS allows a tradeoff
between effort and utility

Higher Effort

Lower Higher
Utility Utility

Lower Effort

Higher Effort

Lower
Utility

Higher
Utility

Existing General
Purpose Systems

Lower Effort

Higher Effort

Custom Special

Purpose Systems

Lower
Utility

Higher
Utility

Existing General
Purpose Systems

Lower Effort

Higher Effort

Custom Special

Purpose Systems

Lower Higher
Utility NeXx Utility

Existing General
Purpose Systems

Lower Effort

Typical Cloud Web Application

Memcached

Typical Cloud Web Application

Memcached

Linux Memcached

Memcached

1

Network

Processing
0)

NIC Driver
1

Interrupt

Linux Memcached

Memcached

f c,' Context Switch

Network

Processing
T C Schedule thread

NIC Driver
1

Interrupt

Linux Memcached

Memcached

f C,' Context Switch

Network

Processing
T C Schedule thread

NIC Driver
1

Interrupts Enabled

Interrupt

Linux Memcached

M €emcac h ed Copy packet to userspace

f C Context Switch

Network

Processing
T C Schedule thread

NIC Driver
1

Interrupts Enabled

Interrupt

Linux Memcached

A
M emcacac h ed Copy packet to userspace
T C Context Switch
Interrupts Enabled
Network
. Validation, protection from DoS
Processing
v
T C Schedule thread
NIC Driver
)

Interrupt

Example LibraryOS Memcached

Memcached

1

Network

Processing
0)

NIC Driver
1

Interrupt

Example LibraryOS Memcached

Memcached

f Function Call

Network
Processing

T Function Call

NIC Driver
1

Interrupt

Example LibraryOS Memcached

Memcached

f Function Call

Network
Processing

T Function Call

Interrupts Disabled

NIC Driver
1

Interrupt

Example LibraryOS Memcached

Interrupts Disabled

Memcached

1

Network
Processing

1

NIC Driver

)

Interrupt

Zero Copy

Function Call

Function Call

Example LibraryOS Memcached

Memcached

1

Network
Processing

Interrupts Disabled

1

NIC Driver

* No virtual memory v

* No complex scheduling)
* Small system image

Interrupt

Zero Copy

Function Call

Function Call

SageMath

* Open source mathematics
environment (like Matlab,
Mathematica, etc.)

* Python

* Incorporates many libraries 5 [@E

SageMath

* Open source mathematics
environment (like Matlab,
Mathematica, etc.)

* Python

* Incorporates many libraries 5 [@E

SageMath

SDAE.

new Matrix(1000000, 1000000)

SageMath

fx)) fo))) fx) o) fx)

iAALLALL,

new Matrix(1000000, 1000000)

SageMath

fx)) fo))) fx) o) fx)

2999999

* /O

4

—

° EIaStiCity
* Scalability

MultiLibOS Challenges

® Reuse vs. Specialization
® “Versionitis”

® Avoid building a new OS

Elastic Building Block Runtime (EbbRT)

® A MultiLibOS “toolkit” for elastic
applications

® Components are
® [Efficient
® Reusable

® (Customizable

Transactions per second

150k

100k

50k

o—e EDPDRT memcached
—a |Linux memcached

160 260 360 460 560
Connections

Questions!

https://github.com/sesa/ebbrt

Dan Schatzberg, James Cadden, Orran Krieger, Jonathan Appavoo

dschatz@bu.edu jmcadden@bu.edu okrieg@bu.edu jappavoo(@bu.edu

https://github.com/sesa/ebbrt
https://github.com/sesa/ebbrt
mailto:dschatz@bu.edu
mailto:dschatz@bu.edu
mailto:dschatz@bu.edu
mailto:dschatz@bu.edu
mailto:dschatz@bu.edu
mailto:dschatz@bu.edu
mailto:dschatz@bu.edu
mailto:dschatz@bu.edu

