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There has been a lot of
innovation in cloud computing
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In contrast, there has been relatively
ittle innovation in the operating system



Do operating systems matter?



Do operating systems matter? Yes!

Memcached Latency

Component Description Mean latency (us) | 99 %ile latency (us) | Overall share
DC Fabric Propagation 'delay <1 - -
Single Switch 1-4 40-60 1%
Network Path’ 6 150 7 %
Net. serialization 1.3 1.3 1.4 %
Endhost DMA 2.6 2.6 3 %
Kernel (incl. lock contention) 76 1200-2500 86-95 %
Application Application” 2 3 2 %
Total latency 88 1356-2656 100 %

Reproduced from Kapoor et al. Chronos predictable low latency for data

center applications. SOCC 2012




How can we enable OS innovation in the cloud?
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Modify Existing OS Clean Slate
Pros
V' Large software ecosystem v Complete control
Cons
- Large and complex - Need to reproduce
legacy functionality
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What is the role of the operating system?
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Typical Cloud Web Application

Memcached
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The OS doesn’t need to:

Distributed application | Support multiple users
2. Arbitrate and balance

On demand provisioning
competitive resource usage

Isolated (virtual) hardware
for each application 3. Use a symmetric structure

to provide OS functionality
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Typical Cloud Web Application
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A MultiLibOS is a tightly integrated composition
of general purpose operating systems and
specialized library operating systems
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MultiLibOS might be integrated



There are many different ways a
MultiLibOS might be integrated

* Distributed Shared Memory
* Message Passing
* Distributed Namespace (9p)



The MultiLibOS allows a tradeoff
between effort and utility
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Linux Memcached
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Example LibraryOS Memcached
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* Small system image
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MultiLibOS Challenges

® Reuse vs. Specialization
® “Versionitis”

® Avoid building a new OS



Elastic Building Block Runtime (EbbRT)

® A MultiLibOS “toolkit” for elastic
applications

® Components are
® [Efficient
® Reusable

® (Customizable



Transactions per second

150k

100k

50k

o—e EDPDRT memcached
—a |Linux memcached

160 260 360 460 560
Connections



Questions!

https://github.com/sesa/ebbrt

Dan Schatzberg, James Cadden, Orran Krieger, Jonathan Appavoo

dschatz@bu.edu  jmcadden@bu.edu  okrieg@bu.edu jappavoo(@bu.edu
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