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There has been a lot of 
innovation in cloud computing



In contrast, there has been relatively 
little innovation in the operating system 



Do operating systems matter?   Yes! 



percentile of service time. However, as S increases, the observed latency of the set of requests quickly approaches the long tail of latency, in
this case just below the 99th percentile.

2.2 The Dependent/Sequential Pattern
A second network communication pattern in data centers is the dependent/sequential workflow pattern, where applications issue requests

one after another such that a subsequent request is dependent on the results of previous requests. Dependent/sequential patterns, for example,
force Facebook to limit the number of requests that can be issued to build a user’s page to between 100 and 150 [32]. The reason for
this limit is to control latency, since a large number of sequential requests can add up to a large aggregate latency. With a large number of
sequential requests the number of requests hitting the tail latency will also increase, thus lowering the number of otherwise possible sequential
invocations. Another example of this pattern is search queries that are iteratively refined based on previous results.

In both cases, increasing the load on the subservices results in increased service time, lowering the number of operations allowed during
a particular time budget. This observation is widely known, and in this subsection we show how it can be validated both through a queueing
analysis as well as a simple microbenchmark.

Consider a simple model of a single-threaded server where clients send requests to the server according to a Poisson process at a rate �.
The server processes requests one at a time with an average service time of µ. Since the service time is variable, we model the system as
an M/G/1 queue. Using the Pollaczek-Khinchine transformation [7], we compute the expected wait time as a function of the variance of the
service time using

W =
⇢+ �µV ar(S)

2(µ� �)

where ⇢ = �/µ.

Component Description Mean latency (µs) 99 %ile latency (µs) Overall share

DC Fabric
Propagation delay < 1 - -

Single Switch 1-4 40-60 1%
Network Path† 6 150 7 %

Endhost
Net. serialization 1.3 1.3 1.4 %

DMA 2.6 2.6 3 %
Kernel (incl. lock contention) 76 1200-2500 86-95 %

Application Application⇤ 2 3 2 %
Total latency 88 1356-2656 100 %

Table 1: Latency sources in data center applications. The underlying operating system is Linux 2.6.28. †The network fabric latency
assumes six switch hops per path and at most 2-3 switches congested along the path. Switch latency is calculated assuming 32 port
switch with a 2MB shared buffer (i.e., 64KB may be allocated to each port). ⇤Application latency is based on Memcached latency.

Based on this model, we can predict the service latency as a function of service load, mean latency, and the standard deviation of variance.
To observe the effect of latency variation, we evaluated the model against � = 1 (based on our observations of Memcached), and � = 2

(representing a higher variance service). For each � value, we use the model to compute the latency, and from that, we compute the number
of service invocations that a developer can issue while fitting into a specified end-to-end latency budget, and plot the results in Figure 2(a).
As expected, that budget is significantly reduced in the presence of increased latency variance.

To validate this model, we compare the predicted number of permitted service invocations to the actual number as measured with
Memcached deployment in our testbed, shown in Figure 2(b). The experimental setup and experiments are described in detail in Section 5.2.
Here, we measure the 99th percentile of latency for both baseline Memcached as well as Memcached implemented on Chronos (CH) with
uniform inter-arrival time and access pattern for requests. Each point in figure represents the number of service invocations permitted with
the specified SLA, as a function of the server load, in requests per second.

The overall trends in these simple studies confirm the intuition that delivering predictable, low latency response requires not just a low
mean latency , but also a small variation from the mean.

3. LATENCY CHARACTERIZATION
In this section, we give a detailed analysis of the main components contributing to the end-to-end latency in the data center applications.

We summarize the results in Table 1 and report the contribution of each component in the end-to-end latency. This includes one-way network
latency for a request to reach from the client to the server, the latency at endhost server to deliver the request to the application and application

Reproduced from Kapoor et al. Chronos predictable low latency for data 
center applications. SOCC 2012
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How can we enable OS innovation in the cloud?
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A MultiLibOS is a tightly integrated composition 
of general purpose operating systems and 

specialized library operating systems
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• Distributed Shared Memory
• Message Passing
• Distributed Namespace (9p)
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Focus on:
• I/O
• Elasticity
• Scalability
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MultiLibOS Challenges

• Reuse vs. Specialization

• “Versionitis”

• Avoid building a new OS



Elastic Building Block Runtime (EbbRT)

• A MultiLibOS “toolkit” for elastic 
applications

• Components are

• Efficient

• Reusable

• Customizable





Questions?

https://github.com/sesa/ebbrt
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